Mol Pain
-
Physical exercise effectively attenuates neuropathic pain, and multiple events including the inhibition of activated glial cells in the spinal dorsal horn, activation of the descending pain inhibitory system, and reductions in pro-inflammatory cytokines in injured peripheral nerves may contribute to exercise-induced hypoalgesia. Since fewer GABAergic hypoalgesic interneurons exist in the dorsal horn in neuropathic pain model animals, the recovery of impaired GABAergic inhibition in the dorsal horn may improve pain behavior. We herein determined whether the production of gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD) in the dorsal horn is restored by treadmill running and contributes to exercise-induced hypoalgesia in neuropathic pain model mice. C57BL/6 J mice underwent partial sciatic nerve ligation (PSL). PSL-Runner mice ran on a treadmill at 7 m/min for 60 min/day, 5 days/week, from two days after PSL. ⋯ Treadmill running prevented PSL-induced reductions in GAD65/67 production, and, thus, GABA levels may be retained in interneurons and neuropils in the superficial dorsal horn. Therefore, improvements in impaired GABAergic inhibition may be involved in exercise-induced hypoalgesia.
-
The mechanisms driving osteoarthritic pain remain poorly understood, but there is increasing evidence for a role of the central nervous system in the chronification of pain. We used functional magnetic resonance imaging to investigate the influence of a model of unilateral knee osteoarthritis on nociceptive processing. ⋯ We provide evidence for modulation of nociceptive processing in a chronic knee osteoarthritis pain model with stronger brain activation and alteration of brain networks induced by the pro-nociceptive stimulus. We also report a shift to a medial pain activation pattern following stimulation of the hyperalgesic hindpaw. Taken together, our data support altered neural pain processing as a result of peripheral and central pain sensitization in this model.
-
We used functional MRI and a longitudinal design to investigate the brain mechanisms in a previously reported estrogen-dependent visceral hypersensitivity model. We hypothesized that noxious visceral stimulation would be associated with activation of the insula, anterior cingulate cortex, and amygdala, and that estrogen-dependent, stress-induced visceral hypersensitivity would both enhance activation of these regions and recruit activation of other brain areas mediating affect and reward processing. Ovariectomized rats were treated with estrogen (17 β-estradiol, E2) or vehicle (n = 5 per group) and scanned in a 7T MRI at three different time points: pre-stress (baseline), 2 days post-stress, and 18 days post-stress. ⋯ This unexpected finding suggests that E2 may dramatically alter visceral nociceptive processing in the brain following an acute stressor. This study is the first to examine estrogen-stress dependent interactions in response to noxious visceral stimulation using functional MRI. Future studies that include other control groups and larger sample sizes are needed to fully understand the interactions between sex hormones, stress, and noxious stimulation on brain activity.
-
Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. ⋯ Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA.
-
Excitatory interneurons account for the majority of neurons in laminae I-III, but their functions are poorly understood. Several neurochemical markers are largely restricted to excitatory interneuron populations, but we have limited knowledge about the size of these populations or their overlap. The present study was designed to investigate this issue by quantifying the neuronal populations that express somatostatin (SST), neurokinin B (NKB), neurotensin, gastrin-releasing peptide (GRP) and the γ isoform of protein kinase C (PKCγ), and assessing the extent to which they overlapped. Since it has been reported that calretinin- and SST-expressing cells have different functions, we also looked for co-localisation of calretinin and SST. ⋯ These results suggest that cells expressing neurotensin, NKB or GRP form largely non-overlapping sets that are likely to correspond to functional populations. In contrast, SST is widely expressed by excitatory interneurons that are likely to be functionally heterogeneous.