Mol Pain
-
Clinical studies indicate that patients with post-traumatic stress disorder (PTSD) frequently share comorbidity with numerous chronic pain conditions. However, the sustained effects of PTSD-like stress over time on visceral nociception and hyperalgesia have been rarely studied, and the underlying mechanisms of stress-induced modulation of visceral hyperalgesia remain elusive. The purpose of this study was to investigate the characterization of visceral nociception and hyperalgesia over time in rats exposed to PTSD-like stress, and to explore the potential role of protein kinase C gamma (PKCγ) in mediating visceral hyperalgesia following exposure to PTSD-like stress. ⋯ The modified SPS alters visceral sensitivity to CRD, and contributes to the maintenance of visceral hyperalgesia, which is associated with enhanced PKCγ expression in the spinal cord. Functional blockade of the PKCγ receptors attenuates SPS-induced visceral hyperalgesia. Thus, the present study identifies a specific molecular mechanism for visceral hyperalgesia which may pave the way for novel therapeutic strategies for PTSD-like conditions.
-
The TRPV1 ion channel is expressed in nociceptors, where pharmacological modulation of its function may offer a means of alleviating pain and neurogenic inflammation processes in the human body. The aim of this study was to investigate the effects of cholesterol depletion of the cell on ion-permeability of the TRPV1 ion channel. The ion-permeability properties of TRPV1 were assessed using whole-cell patch-clamp and YO-PRO uptake rate studies on a Chinese hamster ovary (CHO) cell line expressing this ion channel. ⋯ Our findings show that cholesterol depletion inhibited both the second current, and the increase in ion-permeability of the TRPV1 channel, resulting from sustained agonist-activation with capsaicin and protons (pH 5.5). These results were confirmed with YO-PRO uptake rate studies using laser scanning confocal microscopy, where cholesterol depletion was found to decrease TRPV1 mediated uptake rates of YO-PRO. Hence, these results propose a novel mechanism by which cellular cholesterol depletion modulates the function of TRPV1, which may constitute a novel approach for treatment of neurogenic pain.
-
We have previously shown a sprouting of sympathetic fibers into the upper dermis of the skin following subcutaneous injection of complete Freund's adjuvant (CFA) into the hindpaw. This sprouting correlated with an increase in pain-related sensitivity. We hypothesized that this sprouting and pain-related behavior were caused by an increase in nerve growth factor (NGF) levels. In this study, we investigated whether the inhibition of mature NGF degradation, using a matrix metalloproteinase 2 and 9 (MMP-2/9) inhibitor, was sufficient to reproduce a similar phenotype. ⋯ These findings indicate that localized MMP-2/9 inhibition provokes a pattern of sensitization and fiber sprouting comparable to that previously obtained following CFA injection. Accordingly, the modulation of endogenous NGF levels should be considered as a potential therapeutic target for the management of inflammatory pain associated with arthritis.
-
Leptin, an adipocytokine produced mainly by white adipose tissue, has a broad role in the regulation of neuronal functions. Accumulating evidence has revealed that leptin plays an important role in influencing neuropathic pain, shown recently by the finding that chronic administration of leptin induced thermal hyperalgesia and mechanical allodynia in naïve rats. Chronic constriction sciatic nerve injury (CCI) is a well characterized model used for studying neuropathic pain. The present study was designed to investigate whether leptin plays a role in neuropathic pain in rats induced by CCI by examining particular pain behaviors. ⋯ Our findings suggest that exogenous leptin can alleviate the chronic neuropathic pain caused by CCI. The leptin effect may be mediated by attenuated expression of IL-6, TNFα, and the P2X2 and P2X3 receptors in the DRG of CCI rats.
-
Voltage gated calcium channels (VGCCs) are well known for its importance in synaptic transmission in the peripheral and central nervous system. However, the role of different VGCCs in the anterior cingulate cortex (ACC) has not been studied. Here, we use a multi-electrode array recording system (MED64) to study the contribution of different types of calcium channels in glutamatergic excitatory synaptic transmission in the ACC. ⋯ We found that N-type VGCC contributed partially to (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid- and (R)-Baclofen-induced synaptic inhibition. By contrast, the inhibitory effects of 2-Chloroadenosine and carbamoylcholine chloride did not differ with or without ω-Ctx-GVIA, indicating that they may act through other mechanisms. Our results provide strong evidence that N-type VGCCs mediate fast synaptic transmission in the ACC.