Mol Pain
-
This study demonstrates a critical role in CNS innate immunity of the microglial Toll-like receptor 4 (TLR4) in the induction and maintenance of behavioral hypersensitivity in a rat model of bone cancer pain with the technique of RNA interference (RNAi). We hypothesized that after intramedullary injection of Walker 256 cells (a breast cancer cell line) into the tibia, CNS neuroimmune activation and subsequent cytokine expression are triggered by the stimulation of microglial membrane-bound TLR4. ⋯ TLR4 might be the main mediator in the induction of bone cancer pain. Further study of this early, specific, and innate CNS/microglial response, and how it leads to sustained glial/neuronal hypersensitivity, might lead to new therapies for the prevention and treatment of bone cancer pain syndromes.
-
It has been shown that estrogen is synthesized in the spinal dorsal horn and plays a role in modulating pain transmission. One of the estrogen receptor (ER) subtypes, estrogen receptor alpha (ERα), is expressed in the spinal laminae I-V, including substantia gelatinosa (SG, lamina II). However, it is unclear how ERs are involved in the modulation of nociceptive transmission. ⋯ These results suggest that the selective ERα antagonist MPP pre-synaptically facilitates the excitatory synaptic transmission to SG neurons. The nociceptive transmission evoked by Aδ- and C-fiber stimulation could be potentiated by blocking ERα in the spinal neurons. Thus, the spinal estrogen may negatively regulate the nociceptive transmission through the activation of ERα.
-
Our previous study demonstrated that nitric oxide (NO) contributes to long-term potentiation (LTP) of C-fiber-evoked field potentials by tetanic stimulation of the sciatic nerve in the spinal cord in vivo. Ryanodine receptor (RyR) is a downstream target for NO. The present study further explored the role of RyR in synaptic plasticity of the spinal pain pathway. ⋯ These data indicate that activation of presynaptic RyRs play a crucial role in the induction of LTP in the spinal pain pathway, probably through enhancement of transmitter release.
-
The R192Q mutation of the CACNA1A gene, encoding for the α1 subunit of voltage-gated P/Q Ca2+ channels (Ca(v)2.1), is associated with familial hemiplegic migraine-1. We investigated whether this gain-of-function mutation changed the structure and function of trigeminal neuron P2X3 receptors that are thought to be important contributors to migraine pain. ⋯ The present results suggest that the CACNA1A mutation conferred a novel molecular phenotype to P2X3 receptors of trigeminal ganglion neurons via CaMKII-dependent activation of calcineurin that selectively impaired the serine phosphorylation state of such receptors, thus potentiating their effects in transducing trigeminal nociception.
-
To evaluate whether P2X receptors are involved in responses to noxious pulp stimulation, the P2X3 and P2X2/3 receptor agonist α,β-methyleneATP (α,β-meATP) was applied to the molar tooth pulp and nocifensive behavior and extracellular-signal regulated kinase (ERK) phosphorylation in trigeminal spinal subnucleus caudalis (Vc), trigeminal spinal subnucleus interpolaris (Vi), upper cervical spinal cord (C1/C2) and paratrigeminal nucleus (Pa5) neurons were analyzed in rats. ⋯ The present findings suggest that activation of P2X3 and P2X2/3 receptors in the tooth pulp is sufficient to elicit nociceptive behavioral responses and trigeminal brainstem neuronal activity.