Mol Pain
-
Myofascial pain syndrome (MPS) is an important clinical condition that is characterized by chronic muscle pain and a myofascial trigger point (MTrP) located in a taut band (TB). Previous studies showed that EphrinB1 was involved in the regulation of pathological pain via EphB1 signalling, but whether EphrinB1-EphB1 plays a role in MTrP is not clear. ⋯ The present study showed that the increased expression of p-EphB1/p-EphB2/p-EphB3 was related to MTrPs in patients with MPS. This report is the first study to examine the function of EphrinB1-EphB1 signalling in primary muscle afferent neurons in MPS patients and a rat animal model. This pathway may be one of the most important and promising targets for MPS.
-
Spinal cord stimulation is a proven effective therapy for treating chronic neuropathic pain. Previous work in our laboratory demonstrated that spinal cord stimulation based on a differential target multiplexed programming approach provided significant relief of pain-like behavior in rodents subjected to the spared nerve injury model of neuropathic pain. The relief was significantly better than obtained using high rate and low rate programming. ⋯ Pearson correlations and cell population analysis indicate that differential target multiplexed programming yielded strong and significant correlations to expression levels found in the healthy animals across every evaluated cell-specific transcriptome. In contrast, high rate programming only yielded a strong correlation for the microglia-specific transcriptome, while low rate programming did not yield strong correlations with any cell types. This work provides evidence that differential target multiplexed programming distinctively targeted and modulated the expression of cell-specific genes in the direction of the healthy state thus supporting its previously established action on regulating neuronal-glial interaction processes in a pain model.
-
Lots of studies have demonstrated that anterior cingulate cortex plays important roles in the pain perception and pain modulation. The present study explored the role of mu-opioid receptor in nociceptive modulation in anterior cingulate cortex of rats with neuropathic pain. Neuropathic pain model was set up by chronic constriction injury of the left sciatic nerve of rats. ⋯ To further confirm the role of mu-opioid receptor in morphine-induced antinociception in anterior cingulate cortex, normal rats were received intra-anterior cingulate cortex administration of small interfering RNA targeting mu-opioid receptor and it was found that there was a down-regulation in mu-opioid receptor messenger RNA levels, as well as a down-regulation in mu-opioid receptor expression in anterior cingulate cortex tested by real-time polymerase chain reaction and western blotting. Furthermore, the morphine-induced antinociceptive effect decreased significantly in rats with small interfering RNA targeting mu-opioid receptor, which indicated that knockdown mu-opioid receptor in anterior cingulate cortex could also attenuate morphine-induced antinociceptive effect. These results strongly suggest that mu-opioid receptor plays a significant role in nociceptive modulation in anterior cingulate cortex of rats.
-
Neuropathic pain is a chronic disease state resulting from injury to the nervous system. This type of pain often responds poorly to standard treatments and occasionally may get worse instead of better over time. Patients who experience neuropathic pain report sensitivity to cold and mechanical stimuli. ⋯ Finally, we used RNAscope to probe for TRPA1 and TRPM8 messenger RNA expression in dorsal root ganglia of both species. We found increased TRPA1 messenger RNA, but decreased TRPM8 punctae in naked mole-rats when compared with mice. Our findings likely reflect species differences due to evolutionary environmental responses that are not easily explained by differences in receptor expression between the species.