Mol Pain
-
Review
The Etiological Contribution of GABAergic Plasticity to the Pathogenesis of Neuropathic Pain.
Neuropathic pain developing after peripheral or central nerve injury is the result of pathological changes generated through complex mechanisms. Disruption in the homeostasis of excitatory and inhibitory neurons within the central nervous system is a crucial factor in the formation of hyperalgesia or allodynia occurring with neuropathic pain. The central GABAergic pathway has received attention for its extensive distribution and function in neural circuits, including the generation and development of neuropathic pain. ⋯ In this review, we describe possible mechanisms associated with GABAergic plasticity, such as central sensitization and GABAergic interneuron apoptosis, and the epigenetic etiologies of GABAergic plasticity in neuropathic pain. Moreover, we summarize potential therapeutic targets of GABAergic plasticity that may allow for successful relief of hyperalgesia from nerve injury. Finally, we compare the effects of the GABAergic system in neuropathic pain to other types of chronic pain to understand the contribution of GABAergic plasticity to neuropathic pain.
-
Little is known about the mechanisms involved in the regulation of nociceptin and its receptor (nociceptin opioid peptide receptor, NOP) in response to inflammation and pain in humans. In this study, specific signaling pathways contributing to the regulation of nociceptin and NOP in human peripheral blood leukocytes were investigated. After approval by the ethics committee, peripheral blood obtained from healthy donors was cultured with or without phorbol-12-myristate-13-acetate (PMA). ⋯ Blockade of ERK or p38 pathways partially prevented PMA effects on ppNOC and NOP mRNA (all P <0.05). The combination of ERK and p38 inhibitors completely reversed the effects of PMA ( P <0.05). ERK and p38 are two major signaling pathways regulating nociceptin and its receptor in human peripheral blood leukocytes under inflammatory conditions.
-
The formation of neuromas involves expansion of the cellular components of peripheral nerves. The onset of these disorganized tumors involves activation of sensory nerves and neuroinflammation. Particularly problematic in neuroma is arborization of axons leading to extreme, neuropathic pain. ⋯ Since heterotopic ossification and neuroma often occur together in amputees, they were induced in the same limbs of the study animals. More heterotopic bone was formed in animals with neuromas as compared to those without. These data collectively suggest that perturbation of early neuroinflammation with compounds such as L-748,337 and cromolyn may reduce formation of neuromas.
-
Diabetes mellitus is a global challenge with many diverse health sequelae, of which diabetic peripheral neuropathy is one of the most common. A substantial number of patients with diabetic peripheral neuropathy develop chronic pain, but the genetic and epigenetic factors that predispose diabetic peripheral neuropathy patients to develop neuropathic pain are poorly understood. Recent targeted genetic studies have identified mutations in α-subunits of voltage-gated sodium channels (Navs) in patients with painful diabetic peripheral neuropathy. ⋯ Genetic analysis revealed an aspartic acid to asparagine mutation, D109N, in the β2-subunit. Functional analysis using current-clamp revealed that the β2-D109N rendered dorsal root ganglion neurons hyperexcitable, especially in response to repetitive stimulation. Underlying the hyperexcitability induced by the β2-subunit mutation, as evidenced by voltage-clamp analysis, we found a depolarizing shift in the voltage dependence of Nav1.7 fast inactivation and reduced use-dependent inhibition of the Nav1.7 channel.