Cochrane Db Syst Rev
-
Physical activity (including exercise) may form an important part of regular care for people with cystic fibrosis (CF). This is an update of a previously published review. ⋯ Physical activity interventions for six months and longer likely improve exercise capacity when compared to no training (moderate-certainty evidence). Current evidence shows little or no effect on lung function and HRQoL (low-certainty evidence). Over recent decades, physical activity has gained increasing interest and is already part of multidisciplinary care offered to most people with CF. Adverse effects of physical activity appear rare and there is no reason to actively discourage regular physical activity and exercise. The benefits of including physical activity in an individual's regular care may be influenced by the type and duration of the activity programme as well as individual preferences for and barriers to physical activity. Further high-quality and sufficiently-sized studies are needed to comprehensively assess the benefits of physical activity and exercise in people with CF, particularly in the new era of CF medicine.
-
Cochrane Db Syst Rev · Aug 2022
ReviewImmunity after COVID-19 vaccination in people with higher risk of compromised immune status: a scoping review.
High efficacy in terms of protection from severe COVID-19 has been demonstrated for several SARS-CoV-2 vaccines. However, patients with compromised immune status develop a weaker and less stable immune response to vaccination. Strong immune response may not always translate into clinical benefit, therefore it is important to synthesise evidence on modified schemes and types of vaccination in these population subgroups for guiding health decisions. As the literature on COVID-19 vaccines continues to expand, we aimed to scope the literature on multiple subgroups to subsequently decide on the most relevant research questions to be answered by systematic reviews. ⋯ Up to 6 December 2021, the majority of studies examined data on mRNA vaccines administered as standard vaccination schemes (two doses approximately four to eight weeks apart) that report on immunogenicity parameters or adverse events. Clinical outcomes were less commonly reported, and if so, were often reported as a secondary outcome observed in seroconversion or immunoglobulin titre studies. As informed by this scoping review, two effectiveness reviews (on haematological malignancies and kidney transplant recipients) are currently being conducted.
-
Cochrane Db Syst Rev · Aug 2022
ReviewDifferent corticosteroids and regimens for accelerating fetal lung maturation for babies at risk of preterm birth.
Despite the widespread use of antenatal corticosteroids to prevent respiratory distress syndrome (RDS) in preterm infants, there is currently no consensus as to the type of corticosteroid to use, dose, frequency, timing of use or the route of administration. OBJECTIVES: To assess the effects on fetal and neonatal morbidity and mortality, on maternal morbidity and mortality, and on the child and adult in later life, of administering different types of corticosteroids (dexamethasone or betamethasone), or different corticosteroid dose regimens, including timing, frequency and mode of administration. ⋯ Overall, it remains unclear whether there are important differences between dexamethasone and betamethasone, or between one regimen and another. Most trials compared dexamethasone versus betamethasone. While for most infant and early childhood outcomes there may be no difference between these drugs, for several important outcomes for the mother, infant and child the evidence was inconclusive and did not rule out significant benefits or harms. The evidence on different antenatal corticosteroid regimens was sparse, and does not support the use of one particular corticosteroid regimen over another.
-
Cochrane Db Syst Rev · Aug 2022
ReviewCatheter-directed therapies for the treatment of high risk (massive) and intermediate risk (submassive) acute pulmonary embolism.
Acute pulmonary embolism (APE) is a major cause of acute morbidity and mortality. APE results in long-term morbidity in up to 50% of survivors, known as post-pulmonary embolism (post-PE) syndrome. APE can be classified according to the short-term (30-day) risk of mortality, based on a variety of clinical, imaging and laboratory findings. Most mortality and morbidity is concentrated in high-risk (massive) and intermediate-risk (submassive) APE. The first-line treatment for APE is systemic anticoagulation. High-risk (massive) APE accounts for less than 10% of APE cases and is a life-threatening medical emergency, requiring immediate reperfusion treatment to prevent death. Systemic thrombolysis is the recommended treatment for high-risk (massive) APE. However, only a minority of the people affected receive systemic thrombolysis, due to comorbidities or the 10% risk of major haemorrhagic side effects. Of those who do receive systemic thrombolysis, 8% do not respond in a timely manner. Surgical pulmonary embolectomy is an alternative reperfusion treatment, but is not widely available. Intermediate-risk (submassive) APE represents 45% to 65% of APE cases, with a short-term mortality rate of around 3%. Systemic thrombolysis is not recommended for this group, as major haemorrhagic complications outweigh the benefit. However, the people at higher risk within this group have a short-term mortality of around 12%, suggesting that anticoagulation alone is not an adequate treatment. Identification and more aggressive treatment of people at intermediate to high risk, who have a more favourable risk profile for reperfusion treatments, could reduce short-term mortality and potentially reduce post-PE syndrome. Catheter-directed treatments (catheter-directed thrombolysis and catheter embolectomy) are minimally invasive reperfusion treatments for high- and intermediate-risk APE. Catheter-directed treatments can be used either as the primary treatment or as salvage treatment after failure of systemic thrombolysis. Catheter-directed thrombolysis administers 10% to 20% of the systemic thrombolysis dose directly into the thrombus in the lungs, potentially reducing the risks of haemorrhagic side effects. Catheter embolectomy mechanically removes the thrombus without the need for thrombolysis, and may be useful for people with contraindications for thrombolysis. Currently, the benefits of catheter-based APE treatments compared with existing medical and surgical treatment are unclear despite increasing adoption of catheter treatments by PE response teams. This review examines the evidence for the use of catheter-directed treatments in high- and intermediate-risk APE. This evidence could help guide the optimal treatment strategy for people affected by this common and life-threatening condition. ⋯ We identified one RCT (59 participants) of (ultrasound-augmented) catheter-directed thrombolysis for intermediate-risk (submassive) APE. We found no trials of any catheter-directed treatments (thrombectomy or thrombolysis) in people with high-risk (massive) APE or of catheter-based embolectomy in people with intermediate-risk (submassive) APE. The included trial compared ultrasound-augmented catheter-directed thrombolysis with alteplase and systemic heparinisation versus systemic heparinisation alone. In the treatment group, each participant received an infusion of alteplase 10 mg or 20 mg over 15 hours. We identified a high risk of selection and performance bias, low risk of detection and reporting bias, and unclear risk of attrition and other bias. Certainty of evidence was very low because of risk of bias and imprecision. By 90 days, there was no clear difference in all-cause mortality between the treatment group and control group. A single death occurred in the control group at 20 days after randomisation, but it was unrelated to the treatment or to APE (odds ratio (OR) 0.31, 95% confidence interval (CI) 0.01 to 7.96; 59 participants). By 90 days, there were no episodes of treatment-associated major haemorrhage in either the treatment or control group. There was no clear difference in treatment-associated minor haemorrhage between the treatment and control group by 90 days (OR 3.11, 95% CI 0.30 to 31.79; 59 participants). By 90 days, there were no episodes of recurrent APE requiring retreatment or change to a different APE treatment in the treatment or control group. There was no clear difference in the length of mean total hospital stay between the treatment and control groups. Mean stay was 8.9 (standard deviation (SD) 3.4) days in the treatment group versus 8.6 (SD 3.9) days in the control group (mean difference 0.30, 95% CI -1.57 to 2.17; 59 participants). The included trial did not investigate quality of life measures. AUTHORS' CONCLUSIONS: There is a lack of evidence to support widespread adoption of catheter-based interventional therapies for APE. We identified one small trial showing no clear differences between ultrasound-augmented catheter-directed thrombolysis with alteplase plus systemic heparinisation versus systemic heparinisation alone in all-cause mortality, major and minor haemorrhage rates, recurrent APE and length of hospital stay. Quality of life was not assessed. Multiple small retrospective case series, prospective patient registries and single-arm studies suggest potential benefits of catheter-based treatments, but they provide insufficient evidence to recommend this approach over other evidence-based treatments. Researchers should consider clinically relevant primary outcomes (e.g. mortality and exercise tolerance), rather than surrogate markers (e.g. right ventricular to left ventricular (RV:LV) ratio or thrombus burden), which have limited clinical utility. Trials must include a control group to determine if the effects are specific to the treatment.
-
Cochrane Db Syst Rev · Aug 2022
ReviewSmoking cessation for secondary prevention of cardiovascular disease.
Smoking is a leading cause of cardiovascular disease (CVD), particularly coronary heart disease (CHD). However, quitting smoking may prevent secondary CVD events in people already diagnosed with CHD. OBJECTIVES: To examine the impact of smoking cessation on death from CVD and major adverse cardiovascular events (MACE), in people with incident CHD. ⋯ We included 68 studies, consisting of 80,702 participants. For both primary outcomes, smoking cessation was associated with a decreased risk compared with continuous smoking: CVD death (HR 0.61, 95% CI 0.49 to 0.75; I² = 62%; 18 studies, 17,982 participants; moderate-certainty evidence) and MACE (HR 0.57, 95% CI 0.45 to 0.71; I² = 84%; 15 studies, 20,290 participants; low-certainty evidence). These findings were robust to our planned sensitivity analyses. Through subgroup analysis, for example comparing adjusted versus non-adjusted estimates, we found no evidence of differences in the effect size. While there was substantial heterogeneity, this was primarily in magnitude rather than the direction of the effect estimates. Overall, we judged 11 (16%) studies to be at moderate risk of bias and 18 (26%) at serious risk, primarily due to possible confounding. There was also some evidence of funnel plot asymmetry for MACE outcomes. For these reasons, we rated our certainty in the estimates for CVD death as moderate and MACE as low. For our secondary outcomes, smoking cessation was associated with a decreased risk in all-cause mortality (HR 0.60, 95% CI 0.55 to 0.66; I² = 58%; 48 studies, 59,354 participants), non-fatal myocardial infarction (HR 0.64, 95% CI 0.58 to 0.72; I² = 2%; 24 studies, 23,264 participants) and non-fatal stroke (HR 0.70, 95% CI 0.53 to 0.90; I² = 0%; 9 studies, 11,352 participants). As only one study reported new onset of angina, we did not conduct meta-analysis, but this study reported a lower risk in people who stopped smoking. Quitting smoking was not associated with a worsening of quality of life and suggested improvement in quality of life, with the lower bound of the CI also consistent with no difference (SMD 0.12, 95% CI 0.01 to 0.24; I² = 48%; 8 studies, 3182 participants). AUTHORS' CONCLUSIONS: There is moderate-certainty evidence that smoking cessation is associated with a reduction of approximately one-third in the risk of recurrent cardiovascular disease in people who stop smoking at diagnosis. This association may be causal, based on the link between smoking cessation and restoration of endothelial and platelet function, where dysfunction of both can result in increased likelihood of CVD events. Our results provide evidence that there is a decreased risk of secondary CVD events in those who quit smoking compared with those who continue, and that there is a suggested improvement in quality of life as a result of quitting smoking. Additional studies that account for confounding, such as use of secondary CVD prevention medication, would strengthen the evidence in this area.