Cochrane Db Syst Rev
-
Cochrane Db Syst Rev · May 2020
ReviewCombination antimicrobial susceptibility testing for acute exacerbations in chronic infection of Pseudomonas aeruginosa in cystic fibrosis.
Antibiotic therapy for acute pulmonary exacerbations in people with cystic fibrosis is usually chosen based on the results of antimicrobial susceptibility testing of individual drugs. Combination antimicrobial susceptibility testing assesses the efficacy of drug combinations including two or three antibiotics in vitro and can often demonstrate antimicrobial efficacy against bacterial isolates even when individual antibiotics have little or no effect. Therefore, choosing antibiotics based on combination antimicrobial susceptibility testing could potentially improve response to treatment in people with cystic fibrosis with acute exacerbations. This is an updated version of a previously published review. ⋯ The current evidence, limited to one study, shows that there is insufficient evidence to determine effect of choosing antibiotics based on combination antimicrobial susceptibility testing compared to choosing antibiotics based on conventional antimicrobial susceptibility testing in the treatment of acute pulmonary exacerbations in people with cystic fibrosis with chronic Pseudomonas aeruginosa infection. A large international and multicentre study is needed to further investigate this issue. The only study included in the review was published in 2005, and we have not identified any further relevant studies up to March 2017. We therefore do not plan to update this review until new studies are published.
-
Cochrane Db Syst Rev · May 2020
Review Meta Analysis Comparative StudyA comparison of different antibiotic regimens for the treatment of infective endocarditis.
Infective endocarditis is a microbial infection of the endocardial surface of the heart. Antibiotics are the cornerstone of treatment, but due to the differences in presentation, populations affected, and the wide variety of micro-organisms that can be responsible, their use is not standardised. This is an update of a review previously published in 2016. ⋯ This first update confirms the findings of the original version of the review. Limited and low to very low-quality evidence suggests that the comparative effects of different antibiotic regimens in terms of cure rates or other relevant clinical outcomes are uncertain. The conclusions of this updated Cochrane Review were based on few RCTs with a high risk of bias. Accordingly, current evidence does not support or reject any regimen of antibiotic therapy for the treatment of infective endocarditis.
-
Cochrane Db Syst Rev · May 2020
Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a rapid review.
Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with respiratory virus diseases, and are currently being investigated in trials as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required. OBJECTIVES: To assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19. ⋯ We followed recommendations of the Cochrane Rapid Reviews Methods Group regarding data extraction and assessment. To assess bias in included studies, we used the assessment criteria tool for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality at hospital discharge, improvement of clinical symptoms (7, 15, and 30 days after transfusion), grade 3 and 4 adverse events, and serious adverse events. MAIN RESULTS: We included eight studies (seven case-series, one prospectively planned, single-arm intervention study) with 32 participants, and identified a further 48 ongoing studies evaluating convalescent plasma (47 studies) or hyperimmune immunoglobulin (one study), of which 22 are randomised. Overall risk of bias of the eight included studies was high, due to: study design; small number of participants; poor reporting within studies; and varied type of participants with different severities of disease, comorbidities, and types of previous or concurrent treatments, including antivirals, antifungals or antibiotics, corticosteroids, hydroxychloroquine and respiratory support. We rated all outcomes as very low certainty, and we were unable to summarise numerical data in any meaningful way. As we identified case-series studies only, we reported results narratively. Effectiveness of convalescent plasma for people with COVID-19 The following reported outcomes could all be related to the underlying natural history of the disease or other concomitant treatment, rather than convalescent plasma. All-cause mortality at hospital discharge All studies reported mortality. All participants were alive at the end of the reporting period, but not all participants had been discharged from hospital by the end of the study (15 participants discharged, 6 still hospitalised, 11 unclear). Follow-up ranged from 3 days to 37 days post-transfusion. We do not know whether convalescent plasma therapy affects mortality (very low-certainty evidence). Improvement of clinical symptoms (assessed by respiratory support) Six studies, including 28 participants, reported the level of respiratory support required; most participants required respiratory support at baseline. All studies reported improvement in clinical symptoms in at least some participants. We do not know whether convalescent plasma improves clinical symptoms (very low-certainty evidence). Time to discharge from hospital Six studies reported time to discharge from hospital for at least some participants, which ranged from four to 35 days after convalescent plasma therapy. Admission on the intensive care unit (ICU) Six studies included patients who were critically ill. At final follow-up the majority of these patients were no longer on the ICU or no longer required mechanical ventilation. Length of stay on the ICU Only one study (1 participant) reported length of stay on the ICU. The individual was discharged from the ICU 11 days after plasma transfusion. Safety of convalescent plasma for people with COVID-19 Grade 3 or 4 adverse events The studies did not report the grade of adverse events after convalescent plasma transfusion. Two studies reported data relating to participants who had experienced adverse events, that were presumably grade 3 or 4. One case study reported a participant who had moderate fever (38.9 °C). Another study (3 participants) reported a case of severe anaphylactic shock. Four studies reported the absence of moderate or severe adverse events (19 participants). We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence). Serious adverse events One study (3 participants) reported one serious adverse event. As described above, this individual had severe anaphylactic shock after receiving convalescent plasma. Six studies reported that no serious adverse events occurred. We are very uncertain whether or not convalescent plasma therapy affects the risk of serious adverse events (very low-certainty evidence). AUTHORS' CONCLUSIONS: We identified eight studies (seven case-series and one prospectively planned single-arm intervention study) with a total of 32 participants (range 1 to 10). Most studies assessed the risks of the intervention; reporting two adverse events (potentially grade 3 or 4), one of which was a serious adverse event. We are very uncertain whether convalescent plasma is effective for people admitted to hospital with COVID-19 as studies reported results inconsistently, making it difficult to compare results and to draw conclusions. We identified very low-certainty evidence on the effectiveness and safety of convalescent plasma therapy for people with COVID-19; all studies were at high risk of bias and reporting quality was low. No RCTs or controlled non-randomised studies evaluating benefits and harms of convalescent plasma have been completed. There are 47 ongoing studies evaluating convalescent plasma, of which 22 are RCTs, and one trial evaluating hyperimmune immunoglobulin. We will update this review as a living systematic review, based on monthly searches in the above mentioned databases and registries. These updates are likely to show different results to those reported here.
-
Cochrane Db Syst Rev · May 2020
Review Meta AnalysisTamponade in surgery for retinal detachment associated with proliferative vitreoretinopathy.
Retinal detachment (RD) with proliferative vitreoretinopathy (PVR) often requires surgery to restore normal anatomy and to stabilize or improve vision. PVR usually occurs in association with recurrent RD (that is, after initial retinal re-attachment surgery), but occasionally may be associated with primary RD. Either way, for both circumstances a tamponade agent (gas or silicone oil) is needed during surgery to reduce the rate of postoperative recurrent RD. ⋯ There do not appear to be any major differences in outcomes between C3F8 and silicone oil. Silicone oil may be better than SF6 for macular attachment and other short-term outcomes. The choice of a tamponade agent should be individualized for each patient. The use of either C3F8 or standard silicone oil appears reasonable for most patients with RD associated with PVR. Heavy silicone oil, which is not available for routine clinical use in the USA, may not demonstrate evidence of superiority over standard silicone oil.
-
Cochrane Db Syst Rev · May 2020
ReviewArtificial corneas versus donor corneas for repeat corneal transplants.
Individuals who have failed one or more full thickness penetrating keratoplasties may be offered repeat corneal surgery using an artificial or donor cornea. An artificial or prosthetic cornea is known as a keratoprosthesis. Both donor and artificial corneal transplantations involve removal of the diseased and opaque recipient cornea (or the previously failed cornea) and replacement with another donor or prosthetic cornea. ⋯ The optimal management for those individuals who have failed a conventional corneal transplantation is unknown. Currently, in some centers, artificial corneal devices are routinely recommended after just one graft failure, while in other centers, they are not recommended until after multiple graft failures, or not at all. To date, there have been no controlled trials comparing the visual outcomes and complications of artificial corneal devices (particularly the Boston type 1 keratoprosthesis, which is the most commonly implanted artificial corneal device) with repeat donor corneal transplantation, in order to guide surgeons and their patients. Such a trial is needed and would offer significant benefit to an ever-increasing pool of people with visual disability due to corneal opacification, most of whom are still in productive stages of their lives.