Int J Med Sci
-
Randomized Controlled Trial
The efficacy of intramuscular ephedrine in preventing hemodynamic perturbations in patients with spinal anesthesia and dexmedetomidine sedation.
Dexmedetomidine is used for sedation during spinal anesthesia. The sympatholytic effect of dexmedetomidine may exacerbate hypotension and bradycardia with spinal anesthesia. This study investigated the effects of prophylactic intramuscular injection of ephedrine in preventing hypotension and bradycardia occurring through combined use of spinal anesthesia and dexmedetomidine. ⋯ The rescue doses of atropine (0.09 ± 0.21 versus 0.28 ± 0.41, p = 0.001) and ephedrine (1.04 ± 2.89 versus 2.03 ± 3.25, p = 0.007) were also significantly lower in the ephedrine group. There was no differences in number of patients with hypertensive (7.0% versus 11.9%, p = 0.375) or tachycardia (1.8% versus 3.4% p = 0.581) episodes. The use of ephedrine intramuscular injections may be a safe and efficacious option in preventing hemodynamic perturbations in patients who received spinal anesthesia and sedation using dexmedetomidine.
-
Observational Study
Geniposide inhibits proliferation and induces apoptosis of diffuse large B-cell lymphoma cells by inactivating the HCP5/miR-27b-3p/MET axis.
Diffuse large B-cell lymphoma (DLBCL) is commonly treated with R-CHOP, but ~30 to 50% of the patients are poorly responsive to this strategy. Geniposide, an extract from the Gardenia jasminoides Ellis, plays antitumor roles in human gastric cancer, hepatocellular carcinoma, and oral squamous carcinoma. However, the effects of geniposide treatment on DLBCL cells, as well as its underlying mechanism, are still unknown. ⋯ HCP5 knockdown reduced MET protein expression, which was subsequently rescued by miR-27b-3p silencing in DLBCL cells. Importantly, the restoration of MET partially reversed the geniposide-induced proliferation inhibition and apoptosis of DLBCL cells. In conclusion, geniposide inhibits the proliferation and induces the apoptosis of DLBCL cells at least partially by regulating the HCP5/miR-27b-3p/MET axis, indicating a potential strategy for DLBCL treatment.
-
Rationale: Coronavirus disease 2019 (COVID-19) was first announced in Wuhan, and has rapidly evolved into a pandemic. However, the risk factors associated with the severity and mortality of COVID-19 are yet to be described in detail. Methods: We retrospectively reviewed the information of 1525 cases from the Leishenshan Hospital in Wuhan. ⋯ Conclusion: PCT level was shown as an independent risk factor of in-hospital mortality among COVID-19 patients. Compared with inpatients with normal PCT levels, inpatients with elevated PCT levels had a higher risk for overall mortality and critically severe disease. These findings may provide guidance for improving the prognosis of patients with critically severe COVID-19.
-
Catheter-related bloodstream infections (CRBSIs) due to pathogenic microorganisms pose a major threat to patients requiring parenteral nutrition (PN). Additives contained in medicines and foods have antiproliferative and bacteriostatic effects on pathogenic microorganisms. Therefore, PN solutions containing additives may also have an antibacterial effect. ⋯ We then created a catheter lumen microorganism contamination model and evaluated the antibacterial effect of PA; we found that all bacteria in the control group grew significantly in the catheter lumen in a time-dependent manner at 48 and 72 h. On the other hand, we demonstrated that PA has bactericidal effects on S. aureus, S. epidermidis, B. cereus, S. marcescens, and P. aeruginosa in the catheter lumen and confirmed that it has a remarkable antiproliferative effect on C. albicans. Hence, we concluded that highly acidic PN solutions that contain a preservative like sodium bisulfite have bactericidal and growth inhibition effects on microorganisms in the catheter lumens of patients with CRBSIs and patients with totally implantable central venous access devices, in whom it is difficult to remove the catheter.
-
Rationale: Acute respiratory distress syndrome (ARDS) is one of the major reasons for ventilation and intubation management of COVID-19 patients but there is no noninvasive imaging monitoring protocol for ARDS. In this study, we aimed to develop a noninvasive ARDS monitoring protocol based on traditional quantitative and radiomics approaches from chest CT. Methods: Patients diagnosed with COVID-19 from Jan 20, 2020 to Mar 31, 2020 were enrolled in this study. ⋯ Conclusions: It is feasible to monitor ARDS from CT images using radiomics or traditional quantitative analysis in COVID-19. The radiomics model seems to be the most practical one for possible clinical use. Multi-center validation with a larger number of samples is recommended in the future.