Int J Med Sci
-
Mammalian target of rapamycin (mTOR) is upregulated in a high percentage of glioblastomas. While a well-known mTOR inhibitor, rapamycin, has been shown to reduce glioblastoma survival, the role of mitochondria in achieving this therapeutic effect is less well known. Here, we examined mitochondrial dysfunction mechanisms that occur with the suppression of mTOR signaling. ⋯ Specifically, increased production of reactive oxygen species (ROS), depolarization of the mitochondrial membrane potential (MMP), and altered mitochondrial dynamics were observed. Furthermore, we verified the therapeutic potential of rapamycin-induced mitochondrial dysfunction through co-treatment with temzolomide (TMZ), the current standard of care for glioblastoma. Together these results demonstrate that the mitochondria remain a promising target for therapeutic intervention against human glioblastoma and that TMZ and rapamycin have a synergistic effect in suppressing glioblastoma viability, enhancing ROS production, and depolarizing MMP.
-
Observational Study
Identifying the association between single nucleotide polymorphisms in KCNQ1, ARAP1, and KCNJ11 and type 2 diabetes mellitus in a Chinese population.
Background: Type 2 diabetes mellitus (T2DM) has a high global prevalence, and insufficient insulin secretion is one of the major reasons for its development. Therefore, investigating the association between T2DM and the single nucleotide polymorphisms (SNPs) in genes associated with insulin secretion is necessary. Methods: T2DM (1,194) and nondiabetic (NDM) (1,292) subjects were enrolled and the ten single nucleotide polymorphisms (SNPs) in KCNQ1, ARAP1, and KCNJ11 associated with insulin secretion were genotyped in a Chinese population. ⋯ For rs2237897, the C/T-T/T genotype is the protective factor compared to the C/C genotype (P<0.001, OR=0.74; 95% CI: 0.63-0.87). Furthermore, when compared with the rs2237897 (C/T-T/T) genotype, rs2237897C/C genotype showed higher HbA1C levels (8.731±2.697 vs 9.282±2.921, P=0.001). Conclusion: Our results revealed that genetic variations in KCNQ1 and ARAP1 were associated with T2DM susceptibility in a Chinese population.
-
Inflammation-related prostate fibrosis (PF) is strongly associated with impaired urethral function and lower urinary tract symptoms (LUTS) severity. The aim of this study was to investigate the effects of RSV in patients with small prostate volume and LUTS. ⋯ After two months, only, group A patients treated with RSV showed significant symptomatic improvement of all NIH-CPSI and IPSS subscale scores, as well as a better EPS assay after prostate massage, in terms of high amount of prostatic volume and reduced white blood cells counts. Our data suggested pharmacological advantage after 2-month treatment with RSV in selected patients with PF for the treatment of voiding and storage complaints.
-
Hypercholesterolemia is a major risk factor for several cardiovascular and metabolic diseases as it triggers oxidative and pro-inflammatory cascades. Baicalein (BL) is a natural flavone with multiple therapeutic properties. The present study aimed to evaluate the potential protective effect of BL supplementation in hypercholesterolaemic rats. ⋯ Histological alterations induced by cholesterol overload in cardiac, hepatic, and renal tissues were ameliorated by BL supplementation. Our results show that the BL treatments (25 and 50 mg/kg/day) to HCD fed rats improved all the altered parameters. These results demonstrate that BL treatment improves cardiac, renal and hepatic dysfunctions in hypercholesterolaemic rats by activation of cellular antioxidant enzymes and/or suppression of inflammatory cytokines.
-
Oxidative stress has been linked to senescence and tumorigenesis via modulation of the cell cycle. Using a hydrogen peroxide (H2O2)-induced oxidative stress-induced premature senescence (OSIPS) model previously reported by our group, this study aimed to investigate the effects of oxidative stress on microRNA (miRNA) expression in relation to the G1-to-S-phase (G1/S) transition of the cell cycle and cell proliferation. On global miRNA analysis of the OSIPS cells, twelve significantly up- or down-regulated miRNAs were identified, the target genes of which are frequently associated with cancers. ⋯ However, under oxidative stress, E2F1 expression was down-regulated, consistent with hampered G1/S transition and suppressed DNA synthesis and cell proliferation. To explain the observed E2F1 down-regulation under oxidative stress, a scheme is proposed which includes miR-20b-5p/miR-106a-5p-dependent regulation, miRNA-E2F1 autoregulatory feedback and E2F1 response to repair oxidative stress-induced DNA damages. The oxidative stress-modulated expression of miR-17 miRNAs and E2F1 may be used to develop strategies to retard or reverse MSC senescence in culture, or senescence in general.