Respiratory care
-
Evaluation of cough strength is clinically important, especially for patients with neuromuscular disorders and before extubation of mechanically ventilated patients. The pressure gradient between the airway and thoracoabdominal cavities during the cough expiratory phase generates cough flow and passive cephalic movement of the diaphragm. We hypothesized that passive diaphragmatic cephalic excursion, peak velocity, or both during cough expiration might predict cough peak flow (CPF). This physiologic study investigated associations of CPF with simultaneously measured ultrasonographic indices in healthy adults during the cough expiratory phase. ⋯ Passive cephalic excursion of the diaphragm during the cough expiratory phase significantly predicted CPF with maximum cough effort in healthy adults. Future studies should investigate the relationship between CPF and excursion in persons with respiratory and neuromuscular disorders.
-
Pediatric patients treated with noninvasive ventilation (NIV) are frequently given aerosol therapy. Limited pediatric data are available on the efficiency of aerosol delivery efficiency. We evaluated the effect of different nebulizers, positions in the single-limb ventilator circuit, and ventilator settings on the efficiency of aerosol delivery in a model of pediatric NIV. We hypothesized that using a vibrating mesh nebulizer, placing the nebulizer after the circuit leak, and not using the highest inspiratory positive airway pressure would increase aerosol delivery efficiency. ⋯ In a model of pediatric NIV using a single-limb circuit, aerosol delivery devices were more efficient when placed after the exhalation port of the ventilator circuit. Vibrating mesh nebulizers were more efficient than jet nebulizers.