Respiratory care
-
Editorial Comment
Pandemic Surge, Well-Intended Responses, and Unintended Consequences.
-
During the coronavirus disease 2019 (COVID-19) pandemic, noninvasive respiratory support has played a central role in managing patients affected by moderate-to-severe acute hypoxemic respiratory failure, despite inadequate scientific evidence to support its usage. High-flow nasal cannula (HFNC) treatment has gained popularity because of its effectiveness in delivering a high fraction of humidified oxygen, which improves ventilatory efficiency and the respiratory pattern, as well as its reported high tolerability, ease of use, and application outside of ICUs. ⋯ This narrative review provides an overview of the recent evidence on the physiologic rationale, risks, and benefits of using HFNC instead of conventional oxygen therapy and other types of noninvasive respiratory support devices, such as continuous positive airway pressure and noninvasive ventilation in patients affected by COVID-19 pneumonia with associated acute hypoxemic respiratory failure. It also summarizes the available evidence with regard to the clinical use of HFNC during the current pandemic and its reported outcomes, and highlights the risks of bioaerosol dispersion associated with HFNC use.
-
Artificial airway suctioning is a key component of airway management and a core skill for clinicians charged with assuring airway patency. Suctioning of the artificial airway is a common procedure performed worldwide on a daily basis. ⋯ From our systematic review, we developed guidelines and recommendations that addressed questions related to the indications, complications, timing, duration, and methods of artificial airway suctioning. By using a modified version of the RAND/UCLA Appropriateness Method, the following recommendations for suctioning were developed for neonatal, pediatric, and adult patients with an artificial airway: (1) breath sounds, visual secretions in the artificial airway, and a sawtooth pattern on the ventilator waveform are indicators for suctioning pediatric and adult patients, and an acute increase in airway resistance may be an indicator for suctioning in neonates; (2) as-needed only, rather than scheduled, suctioning is sufficient for neonatal and pediatric patients; (3) both closed and open suction systems may be used to safely and effectively remove secretions from the artificial airway of adult patients; (4) preoxygenation should be performed before suctioning in pediatric and adult patients; (5) the use of normal saline solution should generally be avoided during suctioning; (6) during open suctioning, sterile technique should be used; (7) suction catheters should occlude < 70% of the endotracheal tube lumen in neonates and < 50% in pediatric and adult patients, and suction pressure should be kept below -120 mm Hg in neonatal and pediatric patients and -200 mm Hg in adult patients; (8) suction should be applied for a maximum of 15 s per suctioning procedure; (9) deep suctioning should only be used when shallow suctioning is ineffective; (10) routine bronchoscopy for secretion removal is not recommended; and (11) devices used to clear endotracheal tubes may be used when airway resistance is increased due to secretion accumulation.
-
Hospital-acquired pneumonia (HAP) and the need for positive-pressure ventilation (PPV) are significant postoperative pulmonary complications (PPCs) that increase patients' lengths of stay, mortality, and costs. Current tools used to predict PPCs use nonmodifiable preoperative factors; thus, they cannot assess provided respiratory therapy effectiveness. The Respiratory Assessment and Allocation of Therapy (RAAT) tool was created to identify HAP and the need for PPV and assist in assigning respiratory therapies. This study aimed to assess the RAAT tool's reliability and validity and determine if allocated respiratory procedures based on scores prevented HAP and the need for PPV. ⋯ The RAAT scoring tool demonstrated an association with the need for PPV using modifiable factors and appears to provide a quantitative method of determining if allocated respiratory therapy is effective.