Anesthesia, essays and researches
-
Dexmedetomidine is a new generation highly selective α2-adrenergic receptor (α2-AR) agonist that is associated with sedative and analgesic sparing effects, reduced delirium and agitation, perioperative sympatholysis, cardiovascular stabilizing effects, and preservation of respiratory function. The aim of this review is to present the most recent topics regarding the advantages in using dexmedetomidine in clinical anesthesia and intensive care, while discussing the controversial issues of its harmful effects.
-
Global warming refers to an average increase in the earth's temperature, which in turn causes changes in climate. A warmer earth may lead to changes in rainfall patterns, a rise in sea level, and a wide range of impacts on plants, wildlife, and humans. Greenhouse gases make the earth warmer by trapping energy inside the atmosphere. ⋯ The global warming potential (GWP) of a halogenated anesthetic is up to 2,000 times greater than CO2. Global warming potentials are used to compare the strength of different GHGs to trap heat in the atmosphere relative to that of CO2. Here we discuss about the GWP of anesthetic gases, preventive measures to decrease the global warming effects of anesthetic gases and Xenon, a newer anesthetic gas for the future of anesthesia.
-
Spinal cord stimulation (SCS) is thought to relieve chronic intractable pain by stimulating nerve fibers in the spinal cord. The resulting impulses in the fibers may inhibit the conduction of pain signals to the brain, according to the pain gate theory proposed by Melzack and Wall in 1965 and the sensation of pain is thus blocked. Although SCS may reduce pain, it will not eliminate it. ⋯ The concept of SCS has evolved rapidly following the technological advances that have produced leads with multiple contact electrodes and battery systems. The current prevalence of patients with chronic pain requiring treatment other than conventional medical management has significantly increased and so has been the need for SCS. With the cost benefit analysis showing significant support for SCS, it may be appropriate to offer this as an effective alternative treatment for these patients.
-
One of the most exiting recent technological advances in the field of anesthesia to track the region of interest is the introduction of anatomical evaluation by ultrasound imaging. Widespread use of this modality depends on its proven clinical efficacy, cost effectiveness, and practicality as it allows anesthesiologist to evaluate complex and varied anatomy prior to needle insertion. Sound used in medicine is not significantly transmitted by air or bone but through fluids which make up the larger part of soft tissues in the body. ⋯ Though ultrasound is much safer, exposure in terms of intensity and time should be limited as far as possible, as high-energy ultrasound can cause heating and damage to tissues. In this review, we discuss established and future areas of ultrasound imaging and emphasize the use of B-mode ultrasound to improve the efficacy of interventional techniques. We have also illustrated potential uses with reference to cross-sectional B-mode images which visually represent a slice of tissues and are the easiest images for interpretation by clinicians.
-
Over the last few years the role of ultrasound has steadily increased and has now an established role in anesthesia and critical care. The various applications of this technology in this field include ultrasound-guided insertion of central lines (internal jugular, subclavian, axillary, femoral) and peripheral venous catheters, arterial line insertion, regional blocks etc. The simple reason of using this technology is "You believe what you see". ⋯ The incidence of carotid artery puncture is higher in children younger than five years than in older children during this procedure. The use of ultrasonography has been shown to increase the success rate and decrease the incidence of complications associated with IJV cannulation in adults. We will go through a stepwise approach in identifying and confirming the required blood vessels for ultrasound-guided cannulation using B-mode (2D), color flow doppler and Pulse Wave Doppler.