Annals of intensive care
-
Annals of intensive care · Dec 2016
Extracorporeal membrane oxygenation for pheochromocytoma-induced cardiogenic shock.
Pheochromocytoma, a rare catecholamine-producing tumor, might provoke stress-induced Takotsubo-like cardiomyopathy and severe cardiogenic shock. Because venoarterial-extracorporeal membrane oxygenation (VA-ECMO) rescue of pheochromocytoma-induced refractory cardiogenic shock has rarely been reported, we reviewed our ICU patients' presentations and outcomes. ⋯ Pheochromocytoma is a rare but reversible cause of cardiogenic shock amenable to VA-ECMO rescue. Adrenal gland imaging should be obtained for all patients with unexplained cardiogenic shock. Lastly, it might be safer to perform adrenalectomy several weeks after the initial catastrophic presentation, once recovery of LV systolic function is complete.
-
Annals of intensive care · Dec 2016
The occlusion tests and end-expiratory esophageal pressure: measurements and comparison in controlled and assisted ventilation.
Esophageal pressure is used as a reliable surrogate of the pleural pressure. It is conventionally measured by an esophageal balloon placed in the lower part of the esophagus. To validate the correct position of the balloon, a positive pressure occlusion test by compressing the thorax during an end-expiratory pause or a Baydur test obtained by occluding the airway during an inspiratory effort is used. An acceptable catheter position is defined when the ratio between the changes in esophageal and airway pressure (∆Pes/∆Paw) is close to unity. Sedation and paralysis could affect the accuracy of esophageal pressure measurements. The aim of this study was to evaluate, in mechanically ventilated patients, the effects of paralysis, two different esophageal balloon positions and two PEEP levels on the ∆Pes/∆Paw ratio measured by the positive pressure occlusion and the Baydur tests and on the end-expiratory esophageal pressure and respiratory mechanics (lung and chest wall). ⋯ Paralysis and balloon position did not clinically affect the measurement of the ∆Pes/∆Paw ratio, while they significantly increased the end-expiratory esophageal pressure.
-
Annals of intensive care · Dec 2016
Assessment and predictors of physical functioning post-hospital discharge in survivors of critical illness.
Prior studies of physical functioning after critical illness have been mostly limited to survivors of acute respiratory distress syndrome. The purpose of this study was to objectively assess muscle strength and physical functioning in survivors of critical illness from a general ICU and the associations of these measures to health-related quality of life (HRQL), mental health and critical illness variables. ⋯ Survivors of critical illness have reduced strength in multiple muscle groups and impaired exercise tolerance impacting both HRQL and mental health. These outcomes were worsened by sepsis and corticosteroid use in the ICU but not ICU length of stay. Interventions to minimizing the burden of sepsis in critically ill patients may improve long-term outcomes.
-
Annals of intensive care · Dec 2016
Respiratory mechanics and lung stress/strain in children with acute respiratory distress syndrome.
In sedated and paralyzed children with acute respiratory failure, the compliance of respiratory system and functional residual capacity were significantly reduced compared with healthy subjects. However, no major studies in children with ARDS have investigated the role of different levels of PEEP and tidal volume on the partitioned respiratory mechanic (lung and chest wall), stress (transpulmonary pressure) and strain (inflated volume above the functional residual capacity). ⋯ Airway pressures and tidal volume normalized to body weight are poor surrogates for lung stress and strain in mild pediatric ARDS.
-
Annals of intensive care · Dec 2016
Performance of the PEdiatric Logistic Organ Dysfunction-2 score in critically ill children requiring plasma transfusions.
Organ dysfunction scores, based on physiological parameters, have been created to describe organ failure. In a general pediatric intensive care unit (PICU) population, the PEdiatric Logistic Organ Dysfunction-2 score (PELOD-2) score had both a good discrimination and calibration, allowing to describe the clinical outcome of critically ill children throughout their stay. This score is increasingly used in clinical trials in specific subpopulation. Our objective was to assess the performance of the PELOD-2 score in a subpopulation of critically ill children requiring plasma transfusions. ⋯ In a subpopulation of critically ill children requiring plasma transfusion, the PELOD-2 score has a lower but acceptable discrimination than in an entire population. This score should therefore be used cautiously in this specific subpopulation.