Acta neurochirurgica. Supplement
-
Acta Neurochir. Suppl. · Jan 2011
Clinical requirements and possible applications of robot assisted endoscopy in skull base and sinus surgery.
Functional Endoscopic Surgery of Paranasal sinuses (FESS) and Skull Base surgery is one of the most frequent surgeries performed at the ENT department of the Bonn University, Germany. Beside of surgical Navigation Robotic is one of the upcoming fields of Computer assisted Surgery developments. This work presents novel research and concepts for Robot Assisted Endoscopic Sinus Surgery (RASS) of the Paranasal sinuses and the anterior Skull Base containing the analysis of surgical workflows, the segmentation and modelling of the Paranasal sinuses and the anterior Skull Base and the development of the robotic path planning. An interdisciplinary group of software engineers and surgeons in Braunschweig and Bonn, Germany are approximate to solutions by a clinical and technical research program financed through the DFG (Deutsche Forschungsgemeinschaft, German research Community).
-
Acta Neurochir. Suppl. · Jan 2011
Isoflurane preconditioning affords functional neuroprotection in a murine model of intracerebral hemorrhage.
Exposure to isoflurane gas prior to neurological injury, known as anesthetic preconditioning, has been shown to provide neuroprotective benefits in animal models of ischemic stroke. Given the common mediators of cellular injury in ischemic and hemorrhagic stroke, we hypothesize that isoflurane preconditioning will provide neurological protection in intracerebral hemorrhage (ICH). ⋯ These results demonstrate the early functional neuroprotective effects of anesthetic preconditioning in ICH and suggest that methods of preconditioning that afford protection in ischemia may also provide protection in ICH.
-
Acta Neurochir. Suppl. · Jan 2011
Mucosal tolerance to brain antigens preserves endogenous TGFβ-1 and improves neurological outcomes following experimental craniotomy.
Intracranial surgery causes brain damage from cortical incisions, intraoperative hemorrhage, retraction, and electrocautery; collectively these injuries have recently been coined surgical brain injury (SBI). Inflammation following SBI contributes to neuronal damage. This study develops T-cells that are immunologically tolerant to brain antigen via the exposure of myelin basic protein (MBP) to airway mucosa. ⋯ Animals tolerized to MBP (SBI+MBP) had better postoperative neurological scores than SBI+Vehicle and SBI+OVA. SBI inhibited the cerebral expression TGFβ1 in PBS and OVA treated groups, whereas MBP treated-animals preserved preoperative levels. Mucosal tolerance to MBP leads to significant improvement in neurological outcome that is associated with the preservation of endogenous levels of brain TGFβ1.
-
Acta Neurochir. Suppl. · Jan 2011
Deferoxamine reduces early brain injury following subarachnoid hemorrhage.
The effect of subarachnoid hemoglobin on neuroglial cells contributing to early brain injury is unclear. Several intracerebral hemorrhage studies indicated that pathological iron deposition in the brain contributes to secondary brain injury. Therefore, the purpose of this study was to investigate the relationship between iron and neuroglial cell changes following SAH, and examine the effect of deferoxamine (DFX). ⋯ DFX treatment reduced brain non-heme iron concentration, ferritin expression and neuronal cell death at day 3 (P < 0.01) following SAH. These results suggest that excessive hemoglobin and iron overload play an important role in early brain injury following SAH. Acute treatment with DFX significantly ameliorates neuronal cell death and may be a potential therapeutic agent for SAH.
-
Acta Neurochir. Suppl. · Jan 2011
Matrix metalloproteinase 9 inhibition reduces early brain injury in cortex after subarachnoid hemorrhage.
This study investigated the role of matrix metalloproteinase-9 (MMP-9) in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Sprague-Dawley male rats (n=30) between 250 and 300 g were used. SAH was produced by injecting autologous arterial blood into the prechiasmatic cistern. ⋯ Laminin, the substrate of MMP-9, was decreased at 24h after SAH, and SB-3CT prevented laminin degradation. The number of TUNEL-positive neurons in cerebral cortex was increased after SAH and decreased by SB-3CT (P<0.01). MMP-9 may be involved in EBI after SAH and inhibition of MMP-9 may reduce EBI in cerebral cortex.