Acta neurochirurgica. Supplement
-
Acta Neurochir. Suppl. · Jan 2006
The effect of intravenous fluid replacement on the response to mannitol in experimental cerebral edema: an analysis of intracranial pressure, serum osmolality, serum electrolytes, and brain water content.
Albino rabbits that had undergone a cryogenic insult over the left parieto-occipital cortex were analyzed for serum osmolality, serum electrolytes, brain water content, and intracranial pressure (ICP) following either a baseline infusion of intravenous (i.v.) fluid (45 mL total) for 3 hours or above-maintenance isotonic saline (73.5 +/- 12 mL or 90.5 +/- 1.5 mL) and mannitol therapy. The subgroups were compared amongst themselves and to sham-operated controls. Serum osmolality was elevated in the higher-dose mannitol subgroup compared with maintenance i.v. fluids subgroup (1 g/kg/h vs 1 g/kg/3 h; p < 0.05), accompanied by an insignificant reduction of serum sodium. ⋯ Reduction of ICP was not found in the lower mannitol dose group. We conclude that the ability of mannitol to reduce cerebral edema is related to the total amount of i.v. fluid replacement. This implies that the amount of i.v. crystalloid fluid that is administered to patients with cerebral edema and raised ICP requiring mannitol for control needs to be carefully monitored.
-
Acta Neurochir. Suppl. · Jan 2006
Granulocyte colony-stimulating factor does not affect contusion size, brain edema or cerebrospinal fluid glutamate concentrations in rats following controlled cortical impact.
Granulocyte colony-stimulating factor (G-CSF) is an established treatment in the neutropenic host. Usage in head-injured patients at risk for infection may aggravate brain damage. In contrast, evidence of G-CSF neuroprotective effects has been reported in rodent models of focal cerebral ischemia. We investigated effects of G-CSF in acute focal traumatic brain injury (TBI) in rats. ⋯ A single injection of G-CSF did not influence cortical contusion volume, brain edema, or glutamate concentrations in CSF determined 24 hours following CCII in rats. G-CSF, administered 30 minutes following experimental TBI, failed to exert neuroprotective effects.
-
Acta Neurochir. Suppl. · Jan 2006
Electrical stimulation of the anterior cingulate cortex in a rat neuropathic pain model.
Electrical stimulation is currently employed to treat several neurological conditions, including pain and Parkinson's disease. It is one of several minimally invasive alternatives to drug treatments for painful conditions. A number of studies have shown that the anterior cingulate cortex (ACC) plays an important role in the processing of pain and pain modulation. The purpose of this study is to investigate these neuropathic pain-relieving effects by delivering electrical stimulation into the ACC of rat models. ⋯ The mechanical allodynia of the neuropathic pain could be modulated by ACC electrical stimulation.
-
Acta Neurochir. Suppl. · Jan 2006
Controlled Clinical TrialTraumatic brain edema in diffuse and focal injury: cellular or vasogenic?
The objective of this study was to confirm the nature of the edema, cellular or vasogenic, in traumatic brain injury in head-injured patients using magnetic resonance imaging techniques. Diffusion-weighted imaging methods were quantified by calculating the apparent diffusion coefficients (ADC). Brain water and cerebral blood flow (CBF) were also measured using magnetic resonance and stable Xenon CT techniques. ⋯ In contrast, in patients with significant brain swelling ADC values were reduced and averaged 0.74 +/- 0.05 (p < 0.0001), consistent with a predominantly cellular edema. We also found that the CBF in these regions was well above ischemic threshold at time of study. Taking these findings in concert, it is concluded that the predominant form of edema responsible for brain swelling and raised ICP is cellular in nature.
-
Acta Neurochir. Suppl. · Jan 2006
Controlled Clinical TrialClinical characteristics of postoperative contralateral intracranial hematoma after traumatic brain injury.
To investigate the clinical characteristics of contralateral intracranial hematoma (ICH) after traumatic brain injury. ⋯ The B-ICH patients had a worse outcome than the U-ICH patients. Contralateral ICH was difficult to forecast based on pre- and intraoperative clinical conditions. Subdural hematoma or contusional ICH was frequently observed as a contralateral ICH.