Annals of the American Thoracic Society
-
The development of culture-independent techniques has revolutionized our understanding of how our human cells interact with the even greater number of microbial inhabitants of our bodies. As part of this revolution, data are increasingly challenging the old dogma that in health, the lung mucosa is sterile. To understand how the lung microbiome may play a role in human health, we identified five major questions for lung microbiome research: (1) Is the lung sterile? (2) Is there a unique core microbiome in the lung? (3) How dynamic are the microbial populations? (4) How do pulmonary immune responses affect microbiome composition? and (5) Are the lungs influenced by the intestinal immune responses to the gut microbiome? From birth, we are exposed to continuous microbial challenges that shape our microbiome. ⋯ With widespread antibiotic use, the ancient microbes that formerly resided within us are being lost, for example, Helicobacter pylori in the stomach. Animal models show that antibiotic exposure in early life has developmental consequences. Considering the potential effects of this altered microbiome on pulmonary responses will be critical for future investigations.
-
Clopidogrel is a commonly used antiplatelet medication. The risk of local hemorrhage associated with use of this drug during routine thoracentesis or small-bore chest tube placement is not well established. ⋯ Considered in combination with other small previously published studies, this single-center, nonrandomized, controlled prospective cohort study suggests that the rate of clinically consequential hemorrhage after ultrasound-guided thoracentesis or chest tube placement in patients taking clopidogrel is sufficiently low to warrant a large, randomized clinical trial designed to determine the safety of performing these procedures without interrupting clopidogrel therapy.
-
The dynamics of infection in chronic obstructive pulmonary disease (COPD) are complex, and microbiome technology has provided us with a new research tool for its better understanding. There is compartmentalization of the microbiota in the various parts of the lung. Studies of the lower airway lumen microbiota in COPD have yielded confusing results, and additional studies with scrupulous attention to prevent and account for upper airway contamination of bronchoalveolar lavage samples are required. ⋯ The Vicious Circle Hypothesis embodies how an altered lung microbiome could contribute to COPD progression. Relating microbiota composition to airway and systemic inflammation and clinical outcomes are important research questions. Although various obstacles need to be surmounted, ultimately lung microbiome studies will provide new insights into how infection contributes to COPD.
-
By definition, the mucosal immune system is responsible for interfacing with the outside world, specifically responding to external threats, of which pathogenic microbes represent a primary challenge. However, it has become apparent that the human host possesses a numerically vast and taxonomically diverse resident microbiota, predominantly in the gut, and also in the airway, genitourinary tract, and skin. The microbiota is generally considered symbiotic, and has been implicated in the regulation of cellular growth, restitution after injury, maintenance of barrier function, and importantly, in the induction, development, and modulation of immune responses. ⋯ As a whole, mucosal immunity encompasses adaptive immune regulation that can involve systemic processes, local tissue-based innate and inflammatory events, intrinsic defenses, and highly conserved cell autonomous cytoprotective responses. Interestingly, specific taxa within the normal microbiota have been implicated in roles shaping specific adaptive, innate, and cell autonomous responses. Taken together, the normal microbiota exerts profound effects on the mucosal immune system, and likely plays key roles in human physiology and disease.