Proceedings of the American Thoracic Society
-
Although a hereditary contribution to emphysema has been long suspected, severe alpha1-antitrypsin deficiency remains the only conclusively proven genetic risk factor for chronic obstructive pulmonary disease (COPD). Recently, genome-wide linkage analysis has led to the identification of two promising candidate genes for COPD: TGFB1 and SERPINE2. ⋯ The use of precisely measured phenotypes, including emphysema quantification on high-resolution chest computed tomography scans, has aided in the discovery of additional genes for clinically relevant COPD-related traits. The use of computed tomography scans to assess emphysema and airway disease as well as newer genetic technologies, including gene expression microarrays and genome-wide association studies, has great potential to detect novel genes affecting COPD susceptibility, severity, and response to treatment.
-
Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) describe the phenomenon of sudden worsening in airway function and respiratory symptoms in patients with COPD. These exacerbations can range from self-limited diseases to episodes of florid respiratory failure requiring mechanical ventilation. The average patient with COPD experiences two such episodes annually, and they account for significant consumption of health care resources. ⋯ In hypercapneic respiratory failure, noninvasive positive pressure ventilation may allow time for other therapies to work and thus avoid endotracheal intubation. If the patient requires invasive mechanical ventilation, the focus should be on avoiding ventilator-induced lung injury and minimizing intrinsic positive end-expiratory pressure. These may require limiting ventilation and "permissive hypercapnia." Although mild episodes of AECOPD are generally reversible, more severe forms of respiratory failure are associated with a substantial mortality and a prolonged period of disability in survivors.
-
It is not readily apparent how pulmonary function could be improved by resecting portions of the lung in patients with emphysema. In emphysema, elevation in residual volume relative to total lung capacity reduces forced expiratory volumes, increases inspiratory effort, and impairs inspiratory muscle mechanics. Lung volume reduction surgery (LVRS) better matches the size of the lungs to the size of the thorax containing them. ⋯ In patients with heterogeneous emphysema, LVRS may also allow space occupied by cysts to be reclaimed by more normal lung. Newer, bronchoscopic methods for lung volume reduction seek to achieve similar ends by causing localized atelectasis, but may be hindered by the low collateral resistance of emphysematous lung. Understanding of the mechanisms of improved function after LVRS can help select patients more likely to benefit from this approach.