Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2014
Investigation of photoplethysmography and near infrared spectroscopy for the assessment of tissue blood perfusion.
Pulse Oximetry (PO) and Near Infrared Spectroscopy (NIRS) are among the most widely adopted optical techniques for the assessment of tissue perfusion. PO estimates arterial oxygen saturation (SpO2) by exploiting light attenuations due to pulsatile arterial blood (AC) and constant absorbers (DC) at two different wavelengths. NIRS processes the attenuations of at least two wavelengths to calculate concentrations of Deoxygenated ([HHb]), Oxygenated ([HbO2]), Total Haemoglobin ([tHb]) and Tissue Oxygenation Index (TOI). ⋯ The system adopts both Pulse Oximetry and NIRS principles to calculate SpO2, [HHb], and [HbO2] and [tHb]. The system has been evaluated on the forearm of 10 healthy volunteers during cuff-induced vascular occlusions. The presented system was able to estimate SpO2, [HHb], [HbO2] and [tHb], showing good agreement with state-of-the-art NIRS and conventional PO.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2014
Multicategory classification of 11 neuromuscular diseases based on microarray data using support vector machine.
We applied multicategory machine learning methods to classify 11 neuromuscular disease groups and one control group based on microarray data. To develop multicategory classification models with optimal parameters and features, we performed a systematic evaluation of three machine learning algorithms and four feature selection methods using three-fold cross validation and a grid search. This study included 114 subjects of 11 neuromuscular diseases and 31 subjects of a control group using microarray data with 22,283 probe sets from the National Center for Biotechnology Information (NCBI). ⋯ In addition, a gene symbol, SPP1 was selected as the top-ranked gene by the BW method. We confirmed relationships between the gene (SPP1) and Duchenne muscular dystrophy (DMD) from a previous study. With our models as clinically helpful tools, neuromuscular diseases could be classified quickly using a computer, thereby giving a time-saving, cost-effective, and accurate diagnosis.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2014
ETD: an extended time delay algorithm for ventricular fibrillation detection.
Ventricular fibrillation (VF) is the most serious type of heart attack which requires quick detection and first aid to improve patients' survival rates. To be most effective in using wearable devices for VF detection, it is vital that the detection algorithms be accurate, robust, reliable and computationally efficient. ⋯ In this paper, we propose an extended time-delay (ETD) algorithm for VF detection and conduct experiments comparing the performance of ETD against five good VF detection algorithms, including TD, using the popular Creighton University (CU) database. Our study shows that (1) TD and ETD outperform the other four algorithms considered and (2) with the same sensitivity setting, ETD improves upon TD in three other quality measures for up to 7.64% and in terms of aggregate accuracy, the ETD algorithm shows an improvement of 2.6% of the area under curve (AUC) compared to TD.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2014
Localization of subthalamic nucleus borders using macroelectrode local field potential recordings.
Deep brain stimulation of the subthalamic nucleus (STN) is a highly effective treatment for motor symptoms of Parkinson's disease. However, precise intraoperative localization of STN remains a procedural challenge. In the present study, local field potentials (LFPs) were recorded from DBS macroelectrodes during trajectory to STN, in six patients. ⋯ For these sub-bands, RMS of these distances was found to be 1.26 mm and 1.06 mm, respectively. Analysis of other sub-bands did not allow for distinguishing the caudal border of STN. In conclusion, macroelectrode-derived LFP recordings may provide an alternative approach to MER-SUA, for localizing the target STN borders during DBS surgery.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2014
Signal quality quantification and waveform reconstruction of arterial blood pressure recordings.
Arterial blood pressure (ABP) is an important vital sign of the cardiovascular system. As with other physiological signals, its measurement can be corrupted by different sources of noise, interference, and artifact. Here, we present an algorithm for the quantification of signal quality and for the reconstruction of the ABP waveform in noise-corrupted segments of the measurement. ⋯ In segments of poor signal quality, the ABP wavelets are then reconstructed on the basis of the expected cycle duration and envelope information derived from neighboring ABP wavelet segments. The algorithm was tested on two datasets of ABP waveform signals containing both invasive radial artery ABP and noninvasive ABP waveforms. Our results show that the approach is efficient in identifying the noisy segments (accuracy, sensitivity and specificity over 95%) and reliable in reconstructing beats that were artificially corrupted.