Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2012
Evaluating the usability of a virtual reality-based Android application in managing the pain experience of wheelchair users.
Pain constitutes an important medical concern that can have severe implications to a wheelchair user's quality of life. Results from studies indicate that pain is a common problem in this group of individuals, having a reported frequency of always (12%) and everyday (33%). ⋯ As a result, in this paper we present an Android application (PainDroid) that has been enhanced with Virtual Reality (VR) technology for the purpose of improving the management of pain. Our evaluation with a group of wheelchair users revealed that PainDroid demonstrated high usability among this population, and is foreseen that it can make an important contribution in research on the assessment and management of pain.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2012
Examining intrinsic thalamic resting state networks using graph theory analysis: implications for mTBI detection.
A major challenge associated with understanding mild traumatic brain injury (mTBI) is the absence of biomarkers in standard clinical imaging modalities. Furthermore, the inhomogeneity of mTBI location and intensity, combined with latent symptoms further complicates identification and treatment. A growing body of evidence suggests that the thalamus may be injured or susceptible to change as the result of mTBI. ⋯ Our results suggest the presence of distinct unilateral thalamic differences in mTBI subjects. We also observe correlations of the thalamic changes with clinical assessments. The findings from this study have implications for functional networks in the thalamus and its projections for application as a potential biomarker for mTBI detection.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2012
EEG-based detection of awakening from isoflurane anesthesia in rats.
In animal studies, reliable measures for depth of anesthesia are frequently required. Previous findings suggest that the continuous depth of anesthesia indices developed for humans might not be adequate for rats whose EEG changes during anesthesia represent more of quick transitions between discrete states. In this paper, the automatic EEG-based detection of awakening from anesthesia was studied in rats. ⋯ The method was tested with EEGs recorded from ten rats recovering from isoflurane anesthesia. The algorithm was shown to be able to detect the sudden change in the EEG related to the moment of awakening with a precision comparable to careful visual inspection. Our findings suggest that monitoring such signal changes may offer an interesting alternative to the application of continuous depth of anesthesia indices when avoiding the awakening of the animal during e.g. a clinical experiment.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2012
Discovering shared dynamics in physiological signals: application to patient monitoring in ICU.
Modern clinical databases include time series of vital signs, which are often recorded continuously during a hospital stay. Over several days, these recordings may yield many thousands of samples. In this work, we explore the feasibility of characterizing the "state of health" of a patient using the physiological dynamics inferred from these time series. ⋯ Each such "dynamic" captures a distinct pattern of evolution of BP and is possibly recurrent within the same time series and shared across multiple patients. Next, we examine the utility of this low-dimensional representation of BP time series for predicting mortality in patients. Our results are based on an intensive care unit (ICU) cohort of 480 patients (with 16% mortality) and indicate that the dynamics of time series of vital signs can be an independent useful predictor of outcome in ICU.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2012
Estimation of venous oxygenation saturation using the finger Photoplethysmograph (PPG) waveform.
In this study, finger photoplethysmograph data obtained from twelve patients undergoing cardiothoracic surgery were analyzed in order to estimate the venous saturation utilizing the modulations created by the positive pressure ventilation in the AC Photoplethysmograph (PPG) signals. The PPG signals were analyzed in the time-domain using a conventional pulse oximetry algorithm to produce estimations of arterial oxygen saturation. ⋯ The results showed that there was no significant difference in the traditionally-derived (time-domain) arterial saturation and the instantaneous arterial saturation. However, the instantaneous venous saturation was found to be significantly lower than the time-domain estimated and instantaneous arterial saturation (P=<0.001).