Scientific reports
-
Meta Analysis
Association between vitamin C intake and the risk of pancreatic cancer: a meta-analysis of observational studies.
Quantification of the association between the intake of vitamin C and risk of pancreatic cancer is still conflicting. We therefore conducted a meta-analysis to assess the association between them. Pertinent studies were identified by a search of PubMed and Web of Knowledge throughSeptember of 2014. ⋯ The associations were also significant both in Caucasian [summary RR = 0.741, 95% CI = 0.626-0.876], Asian [summary RR = 0.455, 95% CI = 0.275-0.754] and Mixed population [summary RR = 0.677, 95% CI = 0.508-0.901]. No publication bias was found. Our analysis suggested that the higher intake of vitamin C might reduce the risk of pancreatic cancer.
-
P2X7 receptor plays important roles in inflammation and immunity, and thereby it serves as a potential therapeutic target for inflammatory diseases. Rhein, an anthraquinone derivative, exhibits significant anti-inflammatory and immunosuppressive activities in therapy. However, the underlying mechanisms are largely unclear. ⋯ Prolonged application of ATP caused macrophage apoptosis, while the presence of rhein suppressed this cell cytotoxicity. Such ATP/BzATP-induced cellular reactions were also inhibited by a well-known rat P2X7 receptor antagonist, brilliant blue G, in a similar way to rhein. Together, our results demonstrate that rhein inhibit ATP/BzATP-induced [Ca(2+)]c increase, pore formation, ROS production, phagocytosis attenuation, IL-1β release and cell apoptosis by antagonizing the P2X7 receptor in rat peritoneal macrophages.
-
Recently, ex vivo three-dimensional organ culture systems have emerged to study the physiology and pathophysiology of human organs. These systems also have potential as a translational tool in tissue engineering; however, this potential is limited by our ability to longitudinally monitor the fate and action of cells used in regenerative therapies. Therefore, we investigated luciferase-mediated bioluminescence imaging (BLI) as a non-invasive technique to continuously monitor cellular behavior in ex vivo whole organ culture. ⋯ We conclude that BLI is a promising tool to monitor spatial and temporal cellular behavior in ex vivo organ culture. Hence, ex vivo organ culture systems allow pre-screening and pre-validation of novel therapeutic concepts prior to in vivo large animal experimentation. Thereby, organ culture systems can reduce animal use, and improve the speed of innovation by overcoming technological, ethical and financial challenges.
-
Long noncoding RNAs (lncRNAs) play critical roles in cellular homeostasis. However, little is known about their effect in developing rat brains with hypoxic-ischemic brain damage (HIBD). To explore the expression and function of lncRNA in HIBD, we analyzed the expression profiles of lncRNAs in hypoxic-ischemic (HI) brains and sham control using microarray analysis. ⋯ Moreover, coding non-coding co-expression network analysis showed that the BC088414 lncRNA expression was correlated with apoptosis-related genes, including Casp6 and Adrb2. Silencing of lncRNA BC088414 in PC12 cells caused reduced mRNA level of Casp6 and Adrb2, decreased cell apoptosis and increased cell proliferation. These results suggested lncRNA might participate in the pathogenesis of HIBD via regulating coding genes.
-
Mesenchymal stem cells (MSCs) have been shown to elicit cardio-protective effects in sepsis. However, the underlying mechanism remains obscure. While recent studies have indicated that miR-223 is highly enriched in MSC-derived exosomes, whether exosomal miR-223 contributes to MSC-mediated cardio-protection in sepsis is unknown. ⋯ Accordingly, these exosomal proteins were transferred to cardiomyocytes, leading to increased inflammation and cell death. By contrast, WT-exosomes encased higher levels of miR-223, which could be delivered to cardiomyocytes, resulting in down-regulation of Sema3A and Stat3. These data for the first time indicate that exosomal miR-223 plays an essential role for MSC-induced cardio-protection in sepsis.