Scientific reports
-
Meta Analysis
Efficacy and safety of newer P2Y12 inhibitors for acute coronary syndrome: a network meta-analysis.
Whether newer P2Y12 inhibitors are more efficacious and safer than clopidogrel and whether there is a superior one remain uncertain. We compared the effect of P2Y12 inhibitors on clinical outcomes in patients with acute coronary syndrome (ACS). Randomized controlled trials comparing clopidogrel, prasugrel, ticagrelor, or cangrelor, in combination with aspirin were searched. ⋯ Thrombolysis in Myocardial Infarction (TIMI) major bleeding was increased with prasugrel compared to clopidogrel (1.36, 1.11-1.66) and ticagrelor (1.33, 1.06-1.67). TIMI minor bleeding was increased with prasugrel (1.44, 1.16-1.77) and cangrelor (1.47, 1.01-2.16) compared to clopidogrel while it was increased with prasugrel compared to ticagrelor (1.32, 1.01-1.72). Prasugrel is preferable to those ACS patients at low bleeding risk to reduce cardiovascular events whereas ticagrelor is a relatively safe antiplatelet drug of choice for most patients.
-
The prevalence of a novel β-coronavirus (SARS-CoV-2) was declared as a public health emergency of international concern on 30 January 2020 and a global pandemic on 11 March 2020 by WHO. The spike glycoprotein of SARS-CoV-2 is regarded as a key target for the development of vaccines and therapeutic antibodies. In order to develop anti-viral therapeutics for SARS-CoV-2, it is crucial to find amino acid pairs that strongly attract each other at the interface of the spike glycoprotein and the human angiotensin-converting enzyme 2 (hACE2) complex. ⋯ As a result of the analysis, two hot spots were identified between hACE2 and the three spike proteins. In particular, E37, K353, G354, and D355 of the hACE2 receptor strongly interact with the spike proteins of coronaviruses. The 3D-SPIEs-based map would provide valuable information to develop anti-viral therapeutics that inhibit PPIs between the spike protein of SARS-CoV-2 and hACE2.
-
Observational Study
A novel severity score to predict inpatient mortality in COVID-19 patients.
COVID-19 is commonly mild and self-limiting, but in a considerable portion of patients the disease is severe and fatal. Determining which patients are at high risk of severe illness or mortality is essential for appropriate clinical decision making. We propose a novel severity score specifically for COVID-19 to help predict disease severity and mortality. 4711 patients with confirmed SARS-CoV-2 infection were included. ⋯ A ROC curve analysis was performed in the derivation cohort achieved an AUC of 0.824 (95% CI 0.814-0.851) and an AUC of 0.798 (95% CI 0.789-0.818) in the validation cohort. Furthermore, based on the risk categorization the probability of mortality was 11.8%, 39% and 78% for patient with low (0-3), moderate (4-6) and high (7-10) COVID-19 severity score. This developed and validated novel COVID-19 severity score will aid physicians in predicting mortality during surge periods.
-
As the Coronavirus Disease 2019 (COVID-19), which is caused by the novel SARS-CoV-2, continues to spread rapidly around the world, there is a need for well validated serological assays that allow the detection of viral specific antibody responses in COVID-19 patients or recovered individuals. In this study, we established and used multiple indirect Enzyme Linked Immunosorbent Assay (ELISA)-based serological assays to study the antibody response in COVID-19 patients. In order to validate the assays we determined the cut off values, sensitivity and specificity of the assays using sera collected from pre-pandemic healthy controls, COVID-19 patients at different time points after disease-onset, and seropositive sera to other human coronaviruses (CoVs). ⋯ We also show that all RT-PCR confirmed COVID-19 patients tested in our study developed both virus specific IgM and IgG antibodies as early as week one after disease onset. Our data also suggest that the inclusion of both S1 and N in serological testing would capture as many potential SARS-CoV-2 positive cases as possible than using any of them alone. This is specifically important for tracing contacts and cases and conducting large-scale epidemiological studies to understand the true extent of virus spread in populations.
-
Nicotine in electronic cigarette (ECIG) liquids can exist in a free-base or protonated (or "salt") form. Protonated nicotine is less aversive upon inhalation than free-base nicotine, and many ECIG manufacturers have begun marketing protonated nicotine products, often with high nicotine concentrations. Regulations intended to control ECIG nicotine delivery limit nicotine concentration but do not consider nicotine form. ⋯ Increasing power led to greater nicotine yield across all conditions. The amount of nicotine emitted by an ECIG is independent of whether the nicotine is free-base or protonated, however the liquid vehicle has a strong effect on yield. Regulations intended to limit nicotine emissions must consider not only nicotine concentration, but also liquid vehicle and device power.