Frontiers in neurology
-
Spontaneous non-traumatic intracerebral hemorrhage (ICH) is associated with high morbidity and mortality throughout the world with no proven effective treatment. Majority of hematoma expansion occur within 4 h after symptom onset and is associated with early deterioration and poor clinical outcome. There is a vital role of ultra-early hemostatic therapy in ICH to limit hematoma expansion. ⋯ Idarucizumab, a humanized monoclonal antibody fragment against dabigatran (direct thrombin inhibitor) is approved by FDA for emergency situations. Administer activated PCC (50 U/kg) or 4-factor PCC (50 U/kg) to patients with ICH associated with direct thrombin inhibitors (DTI) if idarucizumab is not available or if the hemorrhage is associated with a DTI other than dabigatran. For factor Xa inhibitor-associated ICH, administration of 4-factor PCC or aPCC is preferred over recombinant FVIIa because of the lower risk of adverse thrombotic events.
-
The trigemino-cardiac reflex (TCR) is a brainstem reflex that manifests as adverse cardiorespiratory events upon the stimulation of sensory branches of the fifth cranial nerve. This reflex is mainly investigated in different neurosurgical procedures and intervention. This reflex is commonly considered as an acute and mild physiological response. ⋯ Therefore, this article aims to provide the comprehensive understanding of the chronic form of TCR, its manifestations, and management by literature search. Also, this paper would certainly impart a better diagnosis and understanding of TCR phenomenon by knowing the relatively less common form of a chronic TCR. This will help thousands and thousands of patients who are still in the phase of diagnosis and are suffering from vague symptoms related to this reflex.
-
Frontiers in neurology · Jan 2017
ReviewAspects on the Physiological and Biochemical Foundations of Neurocritical Care.
Neurocritical care (NCC) is a branch of intensive care medicine characterized by specific physiological and biochemical monitoring techniques necessary for identifying cerebral adverse events and for evaluating specific therapies. Information is primarily obtained from physiological variables related to intracranial pressure (ICP) and cerebral blood flow (CBF) and from physiological and biochemical variables related to cerebral energy metabolism. Non-surgical therapies developed for treating increased ICP are based on knowledge regarding transport of water across the intact and injured blood-brain barrier (BBB) and the regulation of CBF. ⋯ Attempts to evaluate global cerebral energy state from microdialysis of intraventricular fluid and from the LP ratio of the draining venous blood have recently been presented. To be of clinical relevance, the information from all monitoring techniques should be presented bedside online. Accordingly, in the future, the chemical variables obtained from microdialysis will probably be analyzed by biochemical sensors.
-
Frontiers in neurology · Jan 2017
ReviewConsiderations for Experimental Animal Models of Concussion, Traumatic Brain Injury, and Chronic Traumatic Encephalopathy-These Matters Matter.
Animal models of concussion, traumatic brain injury (TBI), and chronic traumatic encephalopathy (CTE) are widely available and routinely deployed in laboratories around the world. Effective animal modeling requires careful consideration of four basic principles. First, animal model use must be guided by clarity of definitions regarding the human disease or condition being modeled. ⋯ Fourth, experimental results observed in animals must be confirmed in human subjects for model validation. Adherence to these principles serves as a bulwark against flawed interpretation of results, study replication failure, and confusion in the field. Implementing these principles will advance basic science discovery and accelerate clinical translation to benefit people affected by concussion, TBI, and CTE.
-
Frontiers in neurology · Jan 2017
ReviewSerial Sampling of Serum Protein Biomarkers for Monitoring Human Traumatic Brain Injury Dynamics: A Systematic Review.
The proteins S100B, neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and neurofilament light (NF-L) have been serially sampled in serum of patients suffering from traumatic brain injury (TBI) in order to assess injury severity and tissue fate. We review the current literature of serum level dynamics of these proteins following TBI and used the term "effective half-life" (t1/2) in order to describe the "fall" rate in serum. ⋯ Serial sampling of brain-specific proteins in serum reveals different temporal trajectories that should be acknowledged. Proteins with shorter serum availability, like S100B, may be superior to proteins such as NF-L in detection of secondary harmful events when monitoring patients with TBI.