Frontiers in neurology
-
Frontiers in neurology · Jan 2019
ReviewDementia and Parkinson's Disease: Similar and Divergent Challenges in Providing Palliative Care.
Dementia and Parkinson's disease are incurable neurological conditions. Patients often experience specific, complex, and varying needs along their disease trajectory. Current management typically employs a multidisciplinary team approach. ⋯ These should be integrated seamlessly with disease-specific care. Substantial research is already being performed on dementia palliative care. This may also inform the further development of palliative care for Parkinson's disease, including an evaluation of palliative interventions and services.
-
Frontiers in neurology · Jan 2019
ReviewGut Microbiota as a Therapeutic Target to Ameliorate the Biochemical, Neuroanatomical, and Behavioral Effects of Traumatic Brain Injuries.
Current efficacious treatments for traumatic brain injury (TBI) are lacking. Establishment of a protective gut microbiota population offers a compelling therapeutic avenue, as brain injury induces disruptions in the composition of the gut microbiota, i.e., gut dysbiosis, which has been shown to contribute to TBI-related neuropathology and impaired behavioral outcomes. The gut microbiome is involved in the modulation of a multitude of cellular and molecular processes fundamental to the progression of TBI-induced pathologies including neuroinflammation, blood brain barrier permeability, immune system response, microglial activation, and mitochondrial dysfunction, as well as intestinal motility and permeability. ⋯ In addition, probiotics have been shown to reduce the rate of infection and time spent in intensive care of hospitalized patients suffering from brain trauma. Perturbations in the composition of the gut microbiota and its metabolite profile may also serve as potential diagnostic and theragnostic biomarkers for injury severity and progression. This review aims to address the etiological role of the gut microbiome in the biochemical, neuroanatomical, and behavioral/cognitive consequences of TBI, as well as explore the potential of gut microbiome manipulation in the form of probiotics as an effective therapeutic to ameliorate TBI-induced pathology and symptoms.
-
Frontiers in neurology · Jan 2019
ReviewStructural and Functional Brain Alterations in Post-traumatic Headache Attributed to Mild Traumatic Brain Injury: A Narrative Review.
Introduction: By definition, post-traumatic headache (PTH) attributed to mild traumatic brain injury (mTBI) is not associated with brain structural abnormalities that are seen on routine clinical inspection of brain images. However, subtle brain structural abnormalities, as well as functional abnormalities, detected via research imaging techniques yield insights into the pathophysiology of PTH. The objective of this manuscript is to summarize published findings regarding research imaging of the brain in PTH attributed to mTBI. ⋯ Although it is not entirely clear if the imaging findings are directly attributable to PTH as opposed to the underlying TBI or other post-TBI symptoms, correlations between the imaging findings with headache frequency and headache resolution suggest a true relationship between the imaging findings and PTH. Conclusions: PTH attributed to mTBI is associated with abnormalities in brain structure and function that can be detected via research imaging. Additional studies are needed to determine the specificity of the findings for PTH, to differentiate findings attributed to PTH from those attributed to the underlying TBI and coexistent post-TBI symptoms, and to determine the accuracy of imaging findings for predicting the development of PPTH.
-
Frontiers in neurology · Jan 2019
ReviewDiffusion Tensor Tractography Studies of Central Post-stroke Pain Due to the Spinothalamic Tract Injury: A Mini-Review.
Elucidation of the pathophysiological mechanism of central post-stroke pain (CPSP) is essential to the development of effective therapeutic modalities for CPSP. However, the pathophysiological mechanism of CPSP has not yet been clearly elucidated. The recent development of diffusion tensor tractography (DTT), derived from diffusion tensor imaging (DTI), has allowed visualization and estimation of the spinothalamic tract (STT), which has been considered the most plausible neural tract responsible for the pathogenesis of CPSP. ⋯ We believe that the reviewed studies will facilitate neurorehabilitation of stroke patients with CPSP. However, DTT studies of CPSP are still in the beginning stage because the total number (six studies) of the reviewed studies is very low and half were case reports. Therefore, further studies involving large numbers of subjects are warranted.
-
Frontiers in neurology · Jan 2019
ReviewTiming of Decompressive Craniectomy for Ischemic Stroke and Traumatic Brain Injury: A Review.
While studies have demonstrated that decompressive craniectomy after stroke or TBI improves mortality, there is much controversy regarding when decompressive craniectomy is optimally performed. The goal of this paper is to synthesize the data regarding timing of craniectomy for malignant stroke and traumatic brain injury (TBI) based on studied time windows and clinical correlates of herniation. In stroke patients, evidence supports that early decompression performed within 24 h or before clinical signs of herniation may improve overall mortality and functional outcomes. ⋯ In pediatric TBI patients, there is also evidence for better functional outcomes when treated with decompressive craniectomy, regardless of timing. More high quality data are needed, particularly that which incorporates a broader set of metrics into decision-making surrounding cranial decompression. In particular, advanced neuromonitoring and imaging technologies may be useful adjuncts in determining the optimal time for decompression in appropriate patients.