Frontiers in physiology
-
Frontiers in physiology · Jan 2019
Tryptophan and Kynurenine Pathway Metabolites in Animal Models of Retinal and Optic Nerve Damage: Different Dynamics of Changes.
Kynurenines, products of tryptophan (TRP) metabolism, display neurotoxic (e.g., 3-hydroxykynurenine; 3-HK), or neuroprotective (e.g., kynurenic acid; KYNA) properties. Imbalance between the enzymes constituting the kynurenine pathway (KP) plays a role in several disease, including neurodegeneration. In this study, we track changes in concentrations of tryptophan and its selected metabolites after damage to retinal ganglion cells and link this data with expression of KP enzymes. ⋯ Kmo expression was transiently upregulated (12 h after the procedures). After intraorbital optic nerve transsection (IONT) Kmo expression was upregulated after 48 h and 7 days, KyatI and KyatIII were downregulated after 12, 48 h, 7 days and upregulated after 15 days. Collected data point to the conclusion that development of therapeutic strategies targeting the KP could be beneficial in diseases involving retinal neurodegeneration.
-
Frontiers in physiology · Jan 2019
Effects of Whole-Body Electromyostimulation on Strength-, Sprint-, and Jump Performance in Moderately Trained Young Adults: A Mini-Meta-Analysis of Five Homogenous RCTs of Our Work Group.
Background: Whole-body electromyostimulation (WB-EMS) gained increasing interest in sports within recent years. However, few intervention studies have examined the effects of WB-EMS on trained subjects in comparison to conventional strength training. Objective: The aim of the present mini-meta-analysis of 5 recently conducted and published randomized controlled WB-EMS trails of our work group was to evaluate potentially favorable effects of WB-EMS in comparison to conventional strength training. ⋯ Conclusion: We conclude that WB-EMS is a feasible complementary training stimulus for performance enhancement. However, additional effects on strength and power indices seem to be limited and sprint and jump-performance appear to be benefiting only slightly. Longer training periods and more frequent application times and a slightly larger stimulus could be investigated in larger samples to further elucidate beneficial effects of WB-EMS on performance parameters in athletes.
-
Hepcidin, the master regulator of systemic iron homeostasis, tightly influences erythrocyte production. High hepcidin levels block intestinal iron absorption and macrophage iron recycling, causing iron restricted erythropoiesis and anemia. Low hepcidin levels favor bone marrow iron supply for hemoglobin synthesis and red blood cells production. ⋯ Compounds that antagonize hepcidin or its effect may be useful in inflammation and IRIDA, while hepcidin agonists may improve ineffective erythropoiesis. Correcting ineffective erythropoiesis in animal models ameliorates not only anemia but also iron homeostasis by reducing hepcidin inhibition. Some targeted approaches are now in clinical trials: hopefully they will result in novel treatments for a variety of anemias.
-
Frontiers in physiology · Jan 2019
Fatiguing Trunk Flexor Exercise Decreases Pain Sensitivity in Postpartum Women.
Low back pain (LBP) is common in the general population and among postpartum women. Abdominal muscle exercise is often used to treat LBP, but it is unknown if fatiguing abdominal muscle exercise can produce exercise-induced hypoalgesia (EIH). ⋯ Fatiguing trunk flexor exercise produced local EIH for all groups including postpartum and nulligravid women. Clinically, trunk exercises may be useful for acute pain relief for clinical populations that are characterized by pain and/or weakness in the abdominal region muscles in populations with abdominal pain syndromes.
-
Frontiers in physiology · Jan 2019
Microcirculation After Trochanteric Femur Fractures: A Prospective Cohort Study Using Non-invasive Laser-Doppler Spectrophotometry.
Proximal femur fractures represent a major healthcare problem in the aging society. High rates of post-operative infections are linked to risk factors that seem to affect local microcirculation. Patterns and time courses of alterations in microcirculation have, however, not been previously investigated. ⋯ Comparison of implants indicated the minimally invasive implant PCCP altered microcirculation less than the DHS or the Gamma3 nail. Overall, the proximal femur fracture alone did not alter local skin microcirculation significantly in a way comparable to the effect caused by surgery. In conclusion, microcirculation after proximal femur fractures is highly affected by surgery, gender, smoking, diabetes, age and implant in ways specified in this study.