Frontiers in physiology
-
Frontiers in physiology · Jan 2018
High-Intensity Interval Training Performed by Young Athletes: A Systematic Review and Meta-Analysis.
Background: High-intensity interval training (HIIT) is as a time-efficient alternative to moderate- or low-intensity continuous exercise for improving variables related to endurance and anaerobic performance in young and adolescent athletes. Objectives: To assess original research about enhancement of endurance and anaerobic exercise performance in young and adolescent athletes performing HIIT. Method: Relevant articles published in peer-reviewed journals were retrieved from the electronic databases PubMed and SPORTDiscus in December 2017. ⋯ With HIIT, most variables related to endurance improved to a higher extent, compared to alternative training protocols. However, based on ES, HIIT did not show clear superiority to the alternative training protocols. Nevertheless, young athletes may benefit from HIIT as it requires less time per training session leaving more time for training sport specific skills.
-
Frontiers in physiology · Jan 2018
Comparative Expression of Renin-Angiotensin Pathway Proteins in Visceral Versus Subcutaneous Fat.
Body fat distribution contributes to obesity-related metabolic and cardiovascular disorders. Visceral fat is more detrimental than subcutaneous fat. However, the mechanisms underlying visceral fat-mediated cardiometabolic dysregulation are not completely understood. ⋯ This differential expression may not alter AngII but likely increases Ang1-7 generation in visceral fat. These potential differences in active angiotensin peptides and receptor expression in the two depots suggest that localized RAS may not be involved in differences in visceral vs subcutaneous AT function in obese individuals. Our findings do not support a role for localized RAS differences in visceral fat-mediated development of cardiovascular and metabolic pathology.
-
Frontiers in physiology · Jan 2018
ReviewExosomes: Basic Biology and Technological Advancements Suggesting Their Potential as Ischemic Heart Disease Therapeutics.
Exosomes are small nano-sized vesicles that deliver biologically active RNA molecules and proteins to recipient cells through binding, fusion or endocytosis. There is emerging evidence that endogenous exosomes released by cardiovascular cells and progenitor cells impact cell survival and proliferation, thus regulating angiogenesis, cardiac protection and repair. These cardioprotective and regenerative traits have the potential to translate in to novel therapeutic options for post-ischaemic cardiac regeneration, thus potentially delaying the progression to ischaemic heart failure. ⋯ Similarly, manipulation of exosomes surface proteins' expression to target exosomes to specific cells and tissues is doable. In addition, nature-inspired synthetic exosomes can be assembled to deliver specific clues to the recipient cells, including proliferative and differentiation stimuli, or shed paracrine signals enabling to reconstructing the heart homeostatic micro-environment. This review will describe exosome biogenesis and emerging evidence of exosome-mediated regenerative cell-to-cell communications and will conclude discussing possibilities of using exosomes to treat ischemic heart disease.
-
Frontiers in physiology · Jan 2018
Cerebrovascular Reactivity and Central Arterial Stiffness in Habitually Exercising Healthy Adults.
Reduced cerebrovascular reactivity to a vasoactive stimulus is associated with age-related diseases such as stroke and cognitive decline. Habitual exercise is protective against cognitive decline and is associated with reduced stiffness of the large central arteries that perfuse the brain. In this context, we evaluated the age-related differences in cerebrovascular reactivity in healthy adults who habitually exercise. ⋯ There were no associations between PWV and cerebrovascular reactivity (range: r = 0.00-0.39; p = 0.07-0.99). Our results demonstrate that cerebrovascular reactivity was not different between young and older adults who habitually exercise; however, MAP reactivity was augmented in older adults. This suggests an age-associated difference in the reliance on MAP to increase cerebral blood flow during hypercapnia.
-
Frontiers in physiology · Jan 2018
Periodic Fluctuation of Tidal Volumes Further Improves Variable Ventilation in Experimental Acute Respiratory Distress Syndrome.
In experimental acute respiratory distress syndrome (ARDS), random variation of tidal volumes (VT ) during volume controlled ventilation improves gas exchange and respiratory system mechanics (so-called stochastic resonance hypothesis). It is unknown whether those positive effects may be further enhanced by periodic VT fluctuation at distinct frequencies, also known as deterministic frequency resonance. We hypothesized that the positive effects of variable ventilation on lung function may be further amplified by periodic VT fluctuation at specific frequencies. ⋯ Cycle-by-cycle analysis of lung mechanics suggested intertidal recruitment/de-recruitment in P10. Lung histologic damage and inflammation did not differ among groups. In this experimental model of severe ARDS, periodic VT fluctuation at a frequency of 0.05 Hz improved oxygenation during variable ventilation, suggesting that deterministic resonance adds further benefit to variable ventilation.