NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2015
Patterns of brain structural connectivity differentiate normal weight from overweight subjects.
Alterations in the hedonic component of ingestive behaviors have been implicated as a possible risk factor in the pathophysiology of overweight and obese individuals. Neuroimaging evidence from individuals with increasing body mass index suggests structural, functional, and neurochemical alterations in the extended reward network and associated networks. ⋯ 1. An increased BMI (i.e., overweight subjects) is associated with distinct changes in gray-matter and fiber density of the brain. 2. Classification algorithms based on white-matter connectivity involving regions of the reward and associated networks can identify specific targets for mechanistic studies and future drug development aimed at abnormal ingestive behavior and in overweight/obesity.
-
NeuroImage. Clinical · Jan 2015
PTSD symptom severity is associated with increased recruitment of top-down attentional control in a trauma-exposed sample.
Recent neuroimaging work suggests that increased amygdala responses to emotional stimuli and dysfunction within regions mediating top down attentional control (dorsomedial frontal, lateral frontal and parietal cortices) may be associated with the emergence of anxiety disorders, including posttraumatic stress disorder (PTSD). This report examines amygdala responsiveness to emotional stimuli and the recruitment of top down attention systems as a function of task demands in a population of U.S. military service members who had recently returned from combat deployment in Afghanistan/Iraq. Given current interest in dimensional aspects of pathophysiology, it is worthwhile examining patients who, while not meeting full PTSD criteria, show clinically significant functional impairment. ⋯ We suggest that these data may reflect two phenomena associated with increased PTSD symptomatology in combat-exposed, but PTSD negative, armed services members. First, these data indicate increased emotional responsiveness by: (i) the positive relationship between PTSD symptom severity and amygdala responsiveness to emotional relative to neutral stimuli; (ii) greater BOLD response as a function of PTSD symptom severity in regions implicated in emotion (striatum) and representation (occipital and temporal cortices) during emotional relative to neutral conditions; and (iii) increased connectivity between the amygdala and regions implicated in emotion (insula/caudate) and representation (middle temporal cortex) as a function of PTSD symptom severity during emotional relative to neutral trials. Second, these data indicate a greater need for the recruitment of regions implicated in top down attention as indicated by (i) greater BOLD response in superior/middle frontal gyrus as a function of PTSD symptom severity in task relative to view conditions; (ii) greater BOLD response in dmFC/dACC, lateral frontal and inferior parietal cortices as a function of PTSD symptom severity in emotional relative to neutral conditions and (iii) greater functional connectivity between the amygdala and inferior parietal cortex as a function of PTSD symptom severity during emotional relative to neutral conditions.
-
NeuroImage. Clinical · Jan 2015
Randomized Controlled TrialRelationship of white matter network topology and cognitive outcome in adolescents with d-transposition of the great arteries.
Patients with congenital heart disease (CHD) are at risk for neurocognitive impairments. Little is known about the impact of CHD on the organization of large-scale brain networks. We applied graph analysis techniques to diffusion tensor imaging (DTI) data obtained from 49 adolescents with dextro-transposition of the great arteries (d-TGA) repaired with the arterial switch operation in early infancy and 29 healthy referent adolescents. ⋯ Finally, structural network topology mediated the neuroprotective effect of longer duration of core cooling during reparative neonatal cardiac surgery, as well as the detrimental effects of prolonged hospitalization. Taken together, worse neurocognitive function in adolescents with d-TGA is mediated by global differences in white matter network topology, suggesting that disruption of this configuration of large-scale networks drives neurocognitive dysfunction. These data provide new insights into the interplay between perioperative factors, brain organization, and cognition in patients with complex CHD.
-
NeuroImage. Clinical · Jan 2015
Multicenter StudyA multicenter study of the early detection of synaptic dysfunction in Mild Cognitive Impairment using Magnetoencephalography-derived functional connectivity.
Synaptic disruption is an early pathological sign of the neurodegeneration of Dementia of the Alzheimer's type (DAT). The changes in network synchronization are evident in patients with Mild Cognitive Impairment (MCI) at the group level, but there are very few Magnetoencephalography (MEG) studies regarding discrimination at the individual level. ⋯ We identified a pattern of neuronal hypersynchronization in MCI, in which the features that best discriminated MCI were fronto-parietal and interhemispheric links. The hypersynchronization pattern found in the MCI patients was stable across the five different centers, and may be considered an early sign of synaptic disruption and a possible preclinical biomarker for MCI/DAT.
-
NeuroImage. Clinical · Jan 2015
Altered intrinsic functional coupling between core neurocognitive networks in Parkinson's disease.
Parkinson's disease (PD) is largely attributed to disruptions in the nigrostriatal dopamine system. These neurodegenerative changes may also have a more global effect on intrinsic brain organization at the cortical level. Functional brain connectivity between neurocognitive systems related to cognitive processing is critical for effective neural communication, and is disrupted across neurological disorders. ⋯ In comparison to the MC, individuals with PD showed significantly less SN-CEN coupling and greater DMN-CEN coupling during rest. Disease severity, an index of striatal dysfunction, was related to reduced functional coupling between the striatum and SN. These results demonstrate that individuals with PD have a dysfunctional pattern of interaction between core neurocognitive networks compared to what is found in healthy individuals, and that interaction between the SN and the striatum is even more profoundly disrupted in those with greater disease severity.