NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2015
Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism.
Despite consensus on the neurological nature of autism spectrum disorders (ASD), brain biomarkers remain unknown and diagnosis continues to be based on behavioral criteria. Growing evidence suggests that brain abnormalities in ASD occur at the level of interconnected networks; however, previous attempts using functional connectivity data for diagnostic classification have reached only moderate accuracy. We selected 252 low-motion resting-state functional MRI (rs-fMRI) scans from the Autism Brain Imaging Data Exchange (ABIDE) including typically developing (TD) and ASD participants (n = 126 each), matched for age, non-verbal IQ, and head motion. ⋯ Among the 100 most informative features (connectivities), for which this peak accuracy was achieved, participation of somatosensory, default mode, visual, and subcortical regions stood out. Whereas some of these findings were expected, given previous findings of default mode abnormalities and atypical visual functioning in ASD, the prominent role of somatosensory regions was remarkable. The finding of peak accuracy for 100 interregional functional connectivities further suggests that brain biomarkers of ASD may be regionally complex and distributed, rather than localized.
-
NeuroImage. Clinical · Jan 2015
Filling in the gaps: Anticipatory control of eye movements in chronic mild traumatic brain injury.
A barrier in the diagnosis of mild traumatic brain injury (mTBI) stems from the lack of measures that are adequately sensitive in detecting mild head injuries. MRI and CT are typically negative in mTBI patients with persistent symptoms of post-concussive syndrome (PCS), and characteristic difficulties in sustaining attention often go undetected on neuropsychological testing, which can be insensitive to momentary lapses in concentration. Conversely, visual tracking strongly depends on sustained attention over time and is impaired in chronic mTBI patients, especially when tracking an occluded target. ⋯ Impaired tracking concurred with abnormal beta activity, which was suppressed in the parietal cortex, especially the right hemisphere, and enhanced in left caudate and frontal-temporal areas. Regional beta-amplitude demonstrated high classification accuracy (92%) compared to eye-tracking (65%) and neuropsychological variables (80%). These findings show that deficient internal anticipatory control in mTBI is associated with altered beta activity, which is remarkably sensitive given the heterogeneity of injuries.
-
NeuroImage. Clinical · Jan 2015
Defining the anterior nucleus of the thalamus (ANT) as a deep brain stimulation target in refractory epilepsy: Delineation using 3 T MRI and intraoperative microelectrode recording.
Deep brain stimulation (DBS) is a minimally invasive and reversible method to treat an increasing number of neurological and psychiatric disorders, including epilepsy. Targeting poorly defined deep structures is based in large degree on stereotactic atlas information, which may be a major source of inconsistent treatment effects. ⋯ ANT is delineated in 3 T MRI by visualization of a thin white matter lamina between ANT and other nuclear groups that lack spiking activity. Direct targeting in the anterior thalamic area is superior to indirect targeting due to extensive individual variation in the location of ANT. Without detailed imaging information, however, a single trajectory MER has little localizing value.
-
NeuroImage. Clinical · Jan 2015
Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus.
Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD) patients, rhythmic auditory stimulation (RAS) induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation and cortical responses to RAS in PD. ⋯ Moreover, post-stimulus beta-band responses were highly abnormal during fast RAS in PD patients. Treatment with levodopa and STN-DBS reinstated a post-stimulus beta-modulation profile similar to controls, while STN-DBS reduced beta-band power in the resting-state. The treatment-sensitivity of beta oscillations suggests that STN-DBS may specifically improve timekeeping functions of cortical beta oscillations during fast auditory pacing.
-
NeuroImage. Clinical · Jan 2015
Co-localization between the BOLD response and epileptiform discharges recorded by simultaneous intracranial EEG-fMRI at 3 T.
Simultaneous scalp EEG-fMRI can identify hemodynamic changes associated with the generation of interictal epileptiform discharges (IEDs), and it has the potential of becoming a standard, non-invasive technique for pre-surgical assessment of patients with medically intractable epilepsy. This study was designed to assess the BOLD response to focal IEDs recorded via simultaneous intracranial EEG-functional MRI (iEEG-fMRI). ⋯ iEEG-fMRI is a feasible and low-risk method for assessment of hemodynamic changes of very focal IEDs that may not be recorded by scalp EEG. A high concordance rate between the location of the BOLD response and IEDs was seen for mesial temporal (6/7) IEDs. Significant BOLD activation was also seen in areas distant from the active electrode and these sites exhibited maximal BOLD activation in the majority of cases. This implies that iEEG-fMRI may further describe the areas involved in the generation of IEDs beyond the vicinity of the electrode(s).