NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2017
Acute stress effects on GABA and glutamate levels in the prefrontal cortex: A 7T 1H magnetic resonance spectroscopy study.
There is ample evidence that the inhibitory GABA and the excitatory glutamate system are essential for an adequate response to stress. Both GABAergic and glutamatergic brain circuits modulate hypothalamus-pituitary-adrenal (HPA)-axis activity, and stress in turn affects glutamate and GABA levels in the rodent brain. However, studies examining stress-induced GABA and glutamate levels in the human brain are scarce. ⋯ We found no associations between psychosocial stress or cortisol stress reactivity and changes over time in medial prefrontal glutamate and GABA levels. GABA and glutamate levels over time were significantly correlated in the control condition but not in the stress condition, suggesting that very subtle differential effects of stress on GABA and glutamate across individuals may occur. However, overall, acute psychosocial stress does not appear to affect in vivo medial prefrontal GABA and glutamate levels, at least this is not detectable with current practice 1H-MRS.
-
NeuroImage. Clinical · Jan 2017
Automated tractography in patients with temporal lobe epilepsy using TRActs Constrained by UnderLying Anatomy (TRACULA).
A detailed understanding of white matter tract alterations in patients with temporal lobe epilepsy (TLE) is important as it may provide useful information for likely side of seizure onset, cognitive impairment and postoperative prognosis. However, most diffusion-tensor imaging (DTI) studies have relied on manual reconstruction of tract bundles, despite the recent development of automated techniques. In the present study, we used an automated white matter tractography analysis approach to quantify temporal lobe white matter tract alterations in TLE and determine the relationships between tract alterations, the extent of hippocampal atrophy and the chronicity and severity of the disorder. ⋯ This study shows that TRACULA permits the detection of alterations of DTI tract scalar metrics in patients with TLE. It also provides the opportunity to explore relationships with structural volume measurements and clinical variables along white matter tracts. Our data suggests that the anterior temporal lobe portions of the uncinate and inferior-longitudinal fasciculus may be particularly vulnerable to pathological alterations in patients with TLE. These alterations are unrelated to the extent of hippocampal atrophy (and therefore potentially mediated by independent mechanisms) but influenced by chronicity and severity of the disorder.
-
NeuroImage. Clinical · Jan 2017
Diffusion imaging of reversible and irreversible microstructural changes within the corticospinal tract in idiopathic normal pressure hydrocephalus.
The symptoms of idiopathic normal pressure hydrocephalus (iNPH) can be improved by shunt surgery, but prediction of treatment outcome is not established. We investigated changes of the corticospinal tract (CST) in iNPH before and after shunt surgery by using diffusion microstructural imaging, which infers more specific tissue properties than conventional diffusion tensor imaging. Two biophysical models were used: neurite orientation dispersion and density imaging (NODDI) and white matter tract integrity (WMTI). ⋯ In a Monte-Carlo simulation that represented model axons as undulating cylinders, both NODDI and WMTI separated the effects of axon density and undulation. Thus, diffusion MRI may distinguish between reversible and irreversible microstructural changes in iNPH. Our findings constitute a step towards a quantitative image biomarker that reflects pathological process and treatment outcomes of iNPH.
-
NeuroImage. Clinical · Jan 2017
Auditory cross-modal reorganization in cochlear implant users indicates audio-visual integration.
There is clear evidence for cross-modal cortical reorganization in the auditory system of post-lingually deafened cochlear implant (CI) users. A recent report suggests that moderate sensori-neural hearing loss is already sufficient to initiate corresponding cortical changes. To what extend these changes are deprivation-induced or related to sensory recovery is still debated. ⋯ This may further support a beneficial relationship between cross-modal activation and daily-life communication skills that may not be fully captured by laboratory-based speech perception tests. Interestingly, hearing impaired individuals showed behavioral and neurophysiological results that were numerically between the other two groups, and they showed a moderate relationship between cross-modal activation and the degree of hearing loss. This further supports the notion that auditory deprivation evokes a reorganization of the auditory system even at early stages of hearing loss.
-
NeuroImage. Clinical · Jan 2017
Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation.
In recent years, many automatic brain structure segmentation methods have been proposed. However, these methods are commonly tested with non-lesioned brains and the effect of lesions on their performance has not been evaluated. Here, we analyze the effect of multiple sclerosis (MS) lesions on three well-known automatic brain structure segmentation methods, namely, FreeSurfer, FIRST and multi-atlas fused by majority voting, which use learning-based, deformable and atlas-based strategies, respectively. ⋯ On the other hand, FIRST is more affected when the lesions are overlaid or close to the structure of analysis. The most affected structure by the presence of lesions is the nucleus accumbens (from - 1.12 ± 2.53 to 1.32 ± 4.00 for the left hemisphere and from - 2.40 ± 5.54 to 9.65 ± 9.87 for the right hemisphere), whereas the structures that show less variation include the thalamus (from 0.03 ± 0.35 to 0.74 ± 0.89 and from - 0.48 ± 1.08 to - 0.04 ± 0.22) and the brainstem (from - 0.20 ± 0.38 to 1.03 ± 1.31). The three segmentation approaches are affected by the presence of MS lesions, which demonstrates that there exists a problem in the automatic segmentation methods of the deep gray matter (DGM) structures that has to be taken into account when using them as a tool to measure the disease progression.