NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2014
Parallel ICA of FDG-PET and PiB-PET in three conditions with underlying Alzheimer's pathology.
The relationships between clinical phenotype, β-amyloid (Aβ) deposition and neurodegeneration in Alzheimer's disease (AD) are incompletely understood yet have important ramifications for future therapy. The goal of this study was to utilize multimodality positron emission tomography (PET) data from a clinically heterogeneous population of patients with probable AD in order to: (1) identify spatial patterns of Aβ deposition measured by ((11)C)-labeled Pittsburgh Compound B (PiB-PET) and glucose metabolism measured by FDG-PET that correlate with specific clinical presentation and (2) explore associations between spatial patterns of Aβ deposition and glucose metabolism across the AD population. We included all patients meeting the criteria for probable AD (NIA-AA) who had undergone MRI, PiB and FDG-PET at our center (N = 46, mean age 63.0 ± 7.7, Mini-Mental State Examination 22.0 ± 4.8). ⋯ These findings are strikingly similar to those of univariate paradigms and provide additional support in favor of specific involvement of the language network, higher-order visual network, and default mode network in clinical variants of AD. The inverse relationship between Aβ deposition and glucose metabolism in partially overlapping brain regions suggests that Aβ may exert both local and remote effects on brain metabolism. Applying multivariate approaches such as pICA to multimodal imaging data is a promising approach for unraveling the complex relationships between different elements of AD pathophysiology.
-
NeuroImage. Clinical · Jan 2014
Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury.
Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1-4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). ⋯ The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI.
-
NeuroImage. Clinical · Jan 2014
White matter microstructure in late middle-age: Effects of apolipoprotein E4 and parental family history of Alzheimer's disease.
Little is still known about the effects of risk factors for Alzheimer's disease (AD) on white matter microstructure in cognitively healthy adults. The purpose of this cross-sectional study was to assess the effect of two well-known risk factors for AD, parental family history and APOE4 genotype. ⋯ APOE4 genotype, parental family history of AD, age, and sex are all associated with microstructural white matter differences in late middle-aged adults. In participants at risk for AD, alterations in diffusion characteristics-both expected and unexpected-may represent cellular changes occurring at the earliest disease stages, but further work is needed. Higher mean, radial, and axial diffusivities were observed in participants who are more likely to be experiencing later stage preclinical pathology, including participants who were both older and carried APOE4, or who were positive for both APOE4 and parental family history of AD.
-
NeuroImage. Clinical · Jan 2014
Regional brain gray and white matter changes in perinatally HIV-infected adolescents.
Despite the success of antiretroviral therapy (ART), perinatally infected HIV remains a major health problem worldwide. Although advance neuroimaging studies have investigated structural brain changes in HIV-infected adults, regional gray matter (GM) and white matter (WM) volume changes have not been reported in perinatally HIV-infected adolescents and young adults. In this cross-sectional study, we investigated regional GM and WM changes in 16 HIV-infected youths receiving ART (age 17.0 ± 2.9 years) compared with age-matched 14 healthy controls (age 16.3 ± 2.3 years) using magnetic resonance imaging (MRI)-based high-resolution T1-weighted images with voxel based morphometry (VBM) analyses. ⋯ These results indicate WM injury in perinatally HIV-infected youths, but the interpretation of the GM results, which appeared as increased regional volumes, is not clear. Further longitudinal studies are needed to clarify if our results represent active ongoing brain infection or toxicity from HIV treatment resulting in neuronal cell swelling and regional increased GM volume. Our findings suggest that assessment of regional GM and WM volume changes, based on VBM procedures, may be an additional measure to assess brain integrity in HIV-infected youths and to evaluate success of current ART therapy for efficacy in the brain.
-
NeuroImage. Clinical · Jan 2014
Regional functional connectivity predicts distinct cognitive impairments in Alzheimer's disease spectrum.
Understanding neural network dysfunction in neurodegenerative disease is imperative to effectively develop network-modulating therapies. In Alzheimer's disease (AD), cognitive decline associates with deficits in resting-state functional connectivity of diffuse brain networks. The goal of the current study was to test whether specific cognitive impairments in AD spectrum correlate with reduced functional connectivity of distinct brain regions. ⋯ Deficits in executive control and episodic memory correlated with reduced functional connectivity of the left frontal cortex, whereas visuospatial impairments correlated with reduced functional connectivity of the left inferior parietal cortex. Our findings indicate that reductions in region-specific alpha-band resting-state functional connectivity are strongly correlated with, and might contribute to, specific cognitive deficits in AD spectrum. In the future, MEGI functional connectivity could be an important biomarker to map and follow defective networks in the early stages of AD.