NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2014
Depressive symptoms and neuroanatomical structures in community-dwelling women: A combined voxel-based morphometry and diffusion tensor imaging study with tract-based spatial statistics.
Depressive symptoms, even at a subclinical level, have been associated with structural brain abnormalities. However, previous studies have used regions of interest or small sample sizes, limiting the ability to generalize the results. In this study, we examined neuroanatomical structures of both gray matter and white matter associated with depressive symptoms across the whole brain in a large sample. ⋯ TBSS showed a CES-D-related decrease in fractional anisotropy and increase in radial and mean diffusivity in several white matter regions, including the right anterior cingulum. In male participants, there was no significant correlation between gray or white matter volume or white matter integrity and the CES-D score. Our results indicate that the reduction in gray matter volume and differences in white matter integrity in specific brain regions, including the anterior cingulate, are associated with depressive symptoms in women.
-
NeuroImage. Clinical · Jan 2014
Disrupted functional connectivity of the periaqueductal gray in chronic low back pain.
Chronic low back pain is a common neurological disorder. The periaqueductal gray (PAG) plays a key role in the descending modulation of pain. In this study, we investigated brain resting state PAG functional connectivity (FC) differences between patients with chronic low back pain (cLBP) in low pain or high pain condition and matched healthy controls (HCs). ⋯ The duration of cLBP was negatively correlated with PAG-insula and PAG-amygdala FC before pain-inducing maneuver in the patient group. These findings are in line with the impairments of the descending pain modulation reported in patients with cLBP. Our results provide evidence showing that cLBP patients have abnormal FC in PAG centered pain modulation network during rest.
-
NeuroImage. Clinical · Jan 2014
Voxel-wise resting-state MEG source magnitude imaging study reveals neurocircuitry abnormality in active-duty service members and veterans with PTSD.
Post-traumatic stress disorder (PTSD) is a leading cause of sustained impairment, distress, and poor quality of life in military personnel, veterans, and civilians. Indirect functional neuroimaging studies using PET or fMRI with fear-related stimuli support a PTSD neurocircuitry model that includes amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC). However, it is not clear if this model can fully account for PTSD abnormalities detected directly by electromagnetic-based source imaging techniques in resting-state. ⋯ In contrast to the healthy volunteers, individuals with PTSD showed: (1) hyperactivity from amygdala, hippocampus, posterolateral orbitofrontal cortex (OFC), dorsomedial prefrontal cortex (dmPFC), and insular cortex in high-frequency (i.e., beta, gamma, and high-gamma) bands; (2) hypoactivity from vmPFC, Frontal Pole (FP), and dorsolateral prefrontal cortex (dlPFC) in high-frequency bands; (3) extensive hypoactivity from dlPFC, FP, anterior temporal lobes, precuneous cortex, and sensorimotor cortex in alpha and low-frequency bands; and (4) in individuals with PTSD, MEG activity in the left amygdala and posterolateral OFC correlated positively with PTSD symptom scores, whereas MEG activity in vmPFC and precuneous correlated negatively with symptom score. The present study showed that MEG source imaging technique revealed new abnormalities in the resting-state electromagnetic signals from the PTSD neurocircuitry. Particularly, posterolateral OFC and precuneous may play important roles in the PTSD neurocircuitry model.
-
Minimally invasive autopsy using post-mortem magnetic resonance imaging (MRI) is a valid alternative to conventional autopsy in fetuses and infants. Estimation of brain weight is an integral part of autopsy, but manual segmentation of organ volumes on MRI is labor intensive and prone to errors, therefore unsuitable for routine clinical practice. In this paper we aim to show that volumetric measurements of the post-mortem fetal and neonatal brain can be accurately estimated using semi-automatic techniques and a high correlation can be found with the weights measured from conventional autopsy results. ⋯ The high correlation between the obtained segmentation and autopsy weights strengthens the idea of using post-mortem MRI as an alternative for conventional autopsy of the brain.
-
NeuroImage. Clinical · Jan 2014
Motor recovery and microstructural change in rubro-spinal tract in subcortical stroke.
The mechanism of motor recovery after stroke may involve reorganization of the surviving networks. However, details of adaptive changes in structural connectivity are not well understood. Here, we show long-term changes in white matter microstructure that relate to motor recovery in stroke patients. ⋯ The results showed significantly increased FA in the red nucleus and dorsal pons in the ipsi-lesional side at 3 months, and significantly decreased FA in the ipsi-lesional internal capsule at all time points, and in the cerebral peduncle, corona radiata, and corpus callosum at 3 months. In the correlation analysis, FA values of clusters in the red nucleus, dorsal pons, midbody of corpus callosum, and cingulum were positively correlated with recovery of motor function. Our study suggests that changes in white matter microstructure in alternative descending motor tracts including the rubro-spinal pathway, and interhemispheric callosal connections may play a key role in compensating for motor impairment after subcortical stroke.