NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2014
Widespread reductions of white matter integrity in patients with long-term remission of Cushing's disease.
Hypercortisolism leads to various physical, psychological and cognitive symptoms, which may partly persist after the treatment of Cushing's disease. The aim of the present study was to investigate abnormalities in white matter integrity in patients with long-term remission of Cushing's disease, and their relation with psychological symptoms, cognitive impairment and clinical characteristics. ⋯ Patients with a history of endogenous hypercortisolism in present remission show widespread changes of white matter integrity in the brain, with abnormalities in the integrity of the uncinate fasciculus being related to the severity of depressive symptoms, suggesting persistent structural effects of hypercortisolism.
-
NeuroImage. Clinical · Jan 2014
Altered functional connectivity links in neuroleptic-naïve and neuroleptic-treated patients with schizophrenia, and their relation to symptoms including volition.
In order to analyze functional connectivity in untreated and treated patients with schizophrenia, resting-state fMRI data were obtained for whole-brain functional connectivity analysis from 22 first-episode neuroleptic-naïve schizophrenia (NNS), 61 first-episode neuroleptic-treated schizophrenia (NTS) patients, and 60 healthy controls (HC). Reductions were found in untreated and treated patients in the functional connectivity between the posterior cingulate gyrus and precuneus, and this was correlated with the reduction in volition from the Positive and Negative Symptoms Scale (PANSS), that is in the willful initiation, sustenance, and control of thoughts, behavior, movements, and speech, and with the general and negative symptoms. ⋯ Differences between the patient groups were that there were more strong functional connectivity links in the NNS patients (including in hippocampal, frontal, and striatal circuits) than in the NTS patients. These findings with a whole brain analysis in untreated and treated patients with schizophrenia provide evidence on some of the brain regions implicated in the volitional, other general, and negative symptoms, of schizophrenia that are not treated by neuroleptics so have implications for the development of other treatments; and provide evidence on some brain systems in which neuroleptics do alter the functional connectivity.
-
NeuroImage. Clinical · Jan 2014
Specific brain morphometric changes in spinal cord injury with and without neuropathic pain.
Why only certain patients develop debilitating pain after spinal chord injury and whether structural brain changes are implicated remain unknown. The aim of this study was to determine if patients with chronic, neuropathic below-level pain have specific cerebral changes compared to those who remain pain-free. Voxel-based morphometry of high resolution, T1-weighted images was performed on three subject groups comprising patients with pain (SCI-P, n = 18), patients without pain (SCI-N, n = 12) and age- and sex-matched controls (n = 18). ⋯ In the visual cortex, SCI-N showed increased grey matter, whilst the SCI-N showed reduced white matter. In conclusion, structural changes in SCI are related to the presence and degree of below-level pain and involve but are not limited to the sensorimotor cortices. Pain-related structural plasticity may hold clinical implications for the prevention and management of refractory neuropathic pain.
-
NeuroImage. Clinical · Jan 2014
In vivo axonal transport deficits in a mouse model of fronto-temporal dementia.
Axonal transport is vital for neurons and deficits in this process have been previously reported in a few mouse models of Alzheimer's disease prior to the appearance of plaques and tangles. However, it remains to be determined whether axonal transport is defective prior to the onset of neurodegeneration. The rTg4510 mouse, a fronto-temporal dementia and parkinsonism-17 (FTDP-17) tauopathy model, over-express tau-P301L mutation found in familial forms of FTDP-17, in the forebrain driven by the calcium-calmodulin kinase II promoter. This mouse model exhibits tau pathology, neurodegeneration in the forebrain, and associated behavioral deficits beginning at 4-5 months of age. ⋯ In our study, we identified the presence of age-dependent axonal transport deficits beginning at 3 months of age in rTg4510 mice. We correlated these deficits at 3 months to the presence of hyperphosphorylated tau in the brain and the presence within the olfactory epithelium. We observed tau pathology not only in the soma of these neurons but also within the axons and processes of these neurons. Our characterization of axonal transport in this tauopathy model provides a functional time point that can be used for future therapeutic interventions.
-
NeuroImage. Clinical · Jan 2014
Functional connectivity of neural motor networks is disrupted in children with developmental coordination disorder and attention-deficit/hyperactivity disorder.
Developmental coordination disorder (DCD) and attention deficit/hyperactivity disorder (ADHD) are prevalent childhood disorders that frequently co-occur. Evidence from neuroimaging research suggests that children with these disorders exhibit disruptions in motor circuitry, which could account for the high rate of co-occurrence. The primary objective of this study was to investigate the functional connections of the motor network in children with DCD and/or ADHD compared to typically developing controls, with the aim of identifying common neurophysiological substrates. ⋯ In addition, children with DCD and/or ADHD exhibited different age-related patterns of connectivity, compared to controls. These findings suggest that children with DCD and/or ADHD exhibit disruptions in motor circuitry, which may contribute to problems with motor functioning and attention. Our results support the existence of common neurophysiological substrates underlying both motor and attention problems.