Handbook of clinical neurology
-
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder associated with repetitive head impact exposure, such as that resulting from sports-related concussive and subconcussive brain trauma. Currently, the only way to diagnose CTE is by using neuropathologic markers obtained postmortem. ⋯ To describe the use of neuroimaging as presumed biomarkers of CTE, this chapter focuses on only those studies that report the chronic stages of sports-related brain injury, as opposed to previous chapters that described neuroimaging in the context of acute and subacute injury. Studies using positron emission tomography and magnetic resonance imaging and spectroscopy will be discussed for contact/collision sports such as American football, boxing, mixed martial arts, rugby, and soccer, in which repetitive head impacts are common.
-
The clinical manifestation of drug-induced abnormalities in thermoregulation occurs across a variety of drug mechanisms. The aim of this chapter is to review two of the most common drug-induced hyperthermic states, serotonin syndrome and neuroleptic malignant syndrome. ⋯ Our goal is to both review the current literature and to provide a practical guide to identification and treatment of these potentially life-threatening illnesses. The diagnostic and treatment recommendations made by us, and by other authors, are likely to change with a better understanding of the pathophysiology of these syndromes.
-
The cerebrospinal fluid (CSF) space consists of the intracerebral ventricles, subarachnoid spaces of the spine and brain (e.g., cisterns and sulci), and the central spinal cord canal. The CSF protects the central nervous system (CNS) in different ways involving metabolic homeostasis, supply of nutrients, functioning as lymphatic system, and regulation of intracranial pressure. CSF is produced by the choroid plexus, brain interstitium, and meninges, and it circulates in a craniocaudal direction from ventricles to spinal subarachnoid space from where it is removed via craniocaudal lymphatic routes and the venous system. ⋯ The extracellular space volume, potassium buffering, CSF circulation, and interstitial fluid absorption are mainly regulated by aquaporin-4 channels, which are abundantly located at the blood-brain and brain-CSF interfaces. The composition of CSF shows a high dynamic range, and the levels of distinct proteins vary due to several influencing factors, such as site of production (brain or blood-derived), site of sampling (ventricular or lumbar), CSF flow rate (BCB function), diurnal fluctuations of CSF production rate, and finally, molecular size of blood-derived proteins (IgM vs. albumin) and circadian rhythm (glucose, prostaglandin D synthase). Alterations of lumbar CSF are mainly influenced by processes of the CNS located adjacent to the ventricular and spinal CSF space and less by pathologies in cortical areas remote from the ventricles.
-
Delirium is common in critically ill patients and associated with increased length of stay in the intensive care unit (ICU) and long-term cognitive impairment. The pathophysiology of delirium has been explained by neuroinflammation, an aberrant stress response, neurotransmitter imbalances, and neuronal network alterations. Delirium develops mostly in vulnerable patients (e.g., elderly and cognitively impaired) in the throes of a critical illness. ⋯ Nonpharmacologic strategies with early mobilization, reducing causes for sleep deprivation, and reorientation measures may be effective in the prevention of delirium. Antipsychotics are effective in treating hallucinations and agitation, but do not reduce the duration of delirium. Combined pain, agitation, and delirium protocols seem to improve the outcome of critically ill patients and may reduce delirium incidence.
-
Developmental venous anomalies (DVAs) are relatively common lesions, present in up to 3% of the population. The defining characteristic of these lesions is the confluence of radially oriented veins into a single dilated venous channel. DVAs are also known as cerebral venous angiomas, cerebral venous malformations, and cerebral venous medullary malformations. ⋯ DVAs are congenital lesions thought to arise from aberrations that occur during venous development, but continue to provide the normal venous drainage to the cerebral territory in which they reside. Although the natural history of DVAs is benign, they may be associated with cavernous malformations or other vascular abnormalities, which can lead to hemorrhage in the vicinity of the DVA. Surgical or endovascular obliteration of DVAs carries a significant risk of venous infarction; thus, conservative management is the treatment of choice for patients with these lesions.