Handbook of clinical neurology
-
Delirium is common in critically ill patients and associated with increased length of stay in the intensive care unit (ICU) and long-term cognitive impairment. The pathophysiology of delirium has been explained by neuroinflammation, an aberrant stress response, neurotransmitter imbalances, and neuronal network alterations. Delirium develops mostly in vulnerable patients (e.g., elderly and cognitively impaired) in the throes of a critical illness. ⋯ Nonpharmacologic strategies with early mobilization, reducing causes for sleep deprivation, and reorientation measures may be effective in the prevention of delirium. Antipsychotics are effective in treating hallucinations and agitation, but do not reduce the duration of delirium. Combined pain, agitation, and delirium protocols seem to improve the outcome of critically ill patients and may reduce delirium incidence.
-
Neurocritical care has two main objectives. Initially, the emphasis is on treatment of patients with acute damage to the central nervous system whether through infection, trauma, or hemorrhagic or ischemic stroke. Thereafter, attention shifts to the identification of secondary processes that may lead to further brain injury, including fever, seizures, and ischemia, among others. ⋯ The concepts and design of each monitor, in addition to the patient population that may most benefit from each modality, will be discussed, along with the various tools that can be used together to guide individualized patient treatment options. Major clinical trials, observational studies, and their effect on clinical outcomes will be reviewed. The future of multimodal monitoring in the field of bioinformatics, clinical research, and device development will conclude the chapter.
-
Acute traumatic spinal cord injury (SCI) is a devastating disease process affecting tens of thousands of people across the USA each year. Despite the increase in primary prevention measures, such as educational programs, motor vehicle speed limits, automobile running lights, and safety technology that includes automobile passive restraint systems and airbags, SCIs continue to carry substantial permanent morbidity and mortality. Medical measures implemented following the initial injury are designed to limit secondary insult to the spinal cord and to stabilize the spinal column in an attempt to decrease devastating sequelae. ⋯ We discuss initial triage, immobilization, and transportation of the patient by emergency medical services personnel to a definitive treatment facility. Upon arrival at the emergency department, we review initial trauma protocols and the evidence-based recommendations for radiographic evaluation of the patient's vertebral column. Finally, we outline closed cervical spine reduction and various aggressive medical therapies aimed at improving neurologic outcome.
-
Traumatic brain injury (TBI) is a growing global problem, which is responsible for a substantial burden of disability and death, and which generates substantial healthcare costs. High-quality intensive care can save lives and improve the quality of outcome. ⋯ However, observational studies have informed the development of authoritative international guidelines, and the use of multimodality monitoring may facilitate rational approaches to optimizing acute physiology, allowing clinicians to optimize the balance between benefit and risk from these interventions in individual patients. Such approaches, along with the emerging impact of advanced neuroimaging, genomics, and protein biomarkers, could lead to the development of precision medicine approaches to the intensive care management of TBI.
-
Epilepsy is one of the most common neurologic disorders, affecting about 50 million people worldwide. The disease is characterized by recurrent seizures, which are due to aberrant neuronal networks resulting in synchronous discharges. The term epilepsy encompasses a large spectrum of syndromes and diseases with different etiopathogenesis. ⋯ Access of this clinically well-characterized neurosurgical material has provided neuropathologists with the opportunity to study a variety of structural brain abnormalities associated with epilepsy, by combining traditional routine histopathologic methods with molecular genetics and functional analysis of the resected tissue. This approach has contributed greatly to a better diagnosis and classification of these structural lesions, and has provided important new insights into their pathogenesis and epileptogenesis. The present chapter provides a detailed description of the large spectrum of histopathologic findings encountered in epilepsy surgery patients, addressing in particular the nonneoplastic pathologies, including hippocampal sclerosis, malformations of cortical development, Sturge-Weber syndrome, and Rasmussen encephalitis, and reviews current knowledge regarding the underlying molecular pathomechanisms and cellular mechanisms mediating hyperexcitability.