The American journal of physiology
-
Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) have been implicated as key mediators in inflammation, morbidity, and mortality associated with sepsis. We examined the role of IL-6 and TNF-alpha signaling on hypothermia, fever, cachexia, anorexia, and survival during sepsis induced by cecal ligation and puncture (CLP) in male and female gene knockout mice. Male wild-type mice developed an initial hypothermia and subsequent fever during sepsis. ⋯ Lack of IL-6 did not affect male or female lethality. These data support the hypothesis that IL-6 is a key mediator of fever and food intake, whereas TNF is responsible for the initial hypothermia and lethality of sepsis in both sexes of mice. The enhanced lethality of CLP-treated female mice supports a role for sex steroids during sepsis.
-
Because melatonin is a cerebral vasoconstrictor agent, we tested whether it could shift the lower limit of cerebral blood flow autoregulation to a lower pressure level, by improving the cerebrovascular dilatory reserve, and thus widen the security margin. Cerebral blood flow and cerebrovascular resistance were measured by hydrogen clearance in the frontal cortex of adult male Wistar rats. The cerebrovasodilatory reserve was evaluated from the increase in the cerebral blood flow under hypercapnia. ⋯ The increase in vasoconstrictor tone was accompanied by an improvement in the vasodilatory response to hypercapnia (+50 to +100% vs. vehicle) and by a shift in the lower limit of cerebral blood flow autoregulation to a lower mean arterial blood pressure level (from 90 to 50 mmHg). Because melatonin had no effect on baseline mean arterial blood pressure, the decrease in the lower limit of cerebral blood flow autoregulation led to an improvement in the cerebrovascular security margin (from 17% in vehicle to 30, 55, and 55% in the low-, medium-, and high-dose melatonin groups, respectively). This improvement in the security margin suggests that melatonin could play an important role in the regulation of cerebral blood flow and may diminish the risk of hypoperfusion-induced cerebral ischemia.
-
This investigation represents the first systematic study of sleep homeostasis in developing mammals that spans the preweaning and postweaning periods. Neonatal rats from 12 to 24 days of postnatal life (P12-P24) were anesthetized with Metofane (methoxyflurane) and implanted with miniaturized electroencephalographic (EEG) and electromyographic electrodes. After 48 h of recovery, neonatal rats were sleep deprived for 3 h by either gentle handling or forced locomotion. ⋯ In P12 rats, approximately 90% of total slow wave sleep time lost during the sleep-deprivation period was recovered during subsequent sleep. A similar recovery of active sleep time was observed in P20-P24 rats. These findings suggest not only that sleep is regulated in neonatal rats but that the accumulation and/or discharge of sleep need changes dramatically between the third and fourth postnatal weeks.
-
To investigate the adaptation of melatonin secretion to an abrupt time shift and the effects of sleep facilitation with a hypnotic, eight subjects were submitted to an 8-h advance shift achieved by advancing bedtimes from 2300-0700 to 1500-2300. Each subject participated in two studies (i.e., placebo and zolpidem). Each study included a baseline period with dim light during waking hours and 2300-0700 bedtimes in total darkness. ⋯ There was no relationship between sleep parameters and the magnitude of the melatonin shifts. Thus the overall advance of melatonin profiles was primarily achieved during the initial exposure to an 8-h period of darkness. The present data suggest that exposure to dark affects human circadian phase.
-
Hepatic tissue perfusion and O2 supply after ischemia are indispensable for recovery of cellular functions, but few studies have been performed regarding the recovery of tissue blood flow and O2 transport. After 5, 15, and 30 min of ischemia of rat livers, hepatic tissue perfusion, hepatic arterial and portal blood flow, plasma PO2, and O2 transport parameters were measured. Hepatic tissue blood flow and erythrocyte velocity in the sinusoids showed biphasic recoveries after temporal ischemia for 5, 15, and 30 min. ⋯ Livers that had been subjected to a prior hepatic artery ligation only showed the first peak at approximately 4 min. The first increase in hepatic blood flow corresponded to the peak in the portal venous flow, and the second increase corresponded to that of the hepatic artery. These results suggested that hepatic microcirculation after temporary hepatic ischemia showed biphasic recoveries because of different restoration patterns of the portal vein and hepatic artery.