Nature
-
The ability to manipulate biological cells and micrometre-scale particles plays an important role in many biological and colloidal science applications. However, conventional manipulation techniques--including optical tweezers, electrokinetic forces (electrophoresis, dielectrophoresis, travelling-wave dielectrophoresis), magnetic tweezers, acoustic traps and hydrodynamic flows--cannot achieve high resolution and high throughput at the same time. Optical tweezers offer high resolution for trapping single particles, but have a limited manipulation area owing to tight focusing requirements; on the other hand, electrokinetic forces and other mechanisms provide high throughput, but lack the flexibility or the spatial resolution necessary for controlling individual cells. ⋯ It requires 100,000 times less optical intensity than optical tweezers. Using an incoherent light source (a light-emitting diode or a halogen lamp) and a digital micromirror spatial light modulator, we have demonstrated parallel manipulation of 15,000 particle traps on a 1.3 x 1.0 mm2 area. With direct optical imaging control, multiple manipulation functions are combined to achieve complex, multi-step manipulation protocols.
-
Acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury, is a devastating clinical syndrome with a high mortality rate (30-60%) (refs 1-3). Predisposing factors for ARDS are diverse and include sepsis, aspiration, pneumonias and infections with the severe acute respiratory syndrome (SARS) coronavirus. At present, there are no effective drugs for improving the clinical outcome of ARDS. ⋯ However, other components of the renin-angiotensin system, including ACE, angiotensin II and the angiotensin II type 1a receptor (AT1a), promote disease pathogenesis, induce lung oedemas and impair lung function. We show that mice deficient for Ace show markedly improved disease, and also that recombinant ACE2 can protect mice from severe acute lung injury. Our data identify a critical function for ACE2 in acute lung injury, pointing to a possible therapy for a syndrome affecting millions of people worldwide every year.