Curēus
-
In December 2019, an outbreak of pneumonia caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), occurred in Wuhan, Hubei province, China, and it has spread rapidly across the world, causing the coronavirus disease 2019 (COVID-19) pandemic. Although SARS-CoV-2 infection predominantly results in pulmonary issues, accumulating evidence suggests the increased frequency of a variety of cardiovascular complications in patients with COVID-19. Acute cardiac injury, defined as elevated cardiac troponin levels, is the most reported cardiac abnormality in COVID-19 and strongly associated with mortality. In this article, we summarize the currently available data on the association of SARS-CoV-2 and COVID-19 with acute myocardial injury.
-
Acute renal failure remains a significant concern in all patients with the coronavirus disease 2019 (COVID-19) infection. Management is particularly challenging in critically ill patients requiring intensive care unit (ICU) level of care. ⋯ Renal replacement therapy is used for a long time in critically ill septic patients who develop progressive renal failure despite adequate conservative support. Timing and choice of renal replacement therapy in critically ill COVID-19 patients remains an area of future research that may help decrease mortality in this patient population.
-
The novel coronaviruses causing severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19) have been shown to utilize angiotensin-converting enzyme 2 (ACE2) as the receptor for entry into the host cells. The involvement of the renin-angiotensin system (RAS) in the evolution and pathogenesis of lung diseases has been implicated in recent years. The two enzymes of RAS, angiotensin-converting enzyme (ACE) and ACE2, serve a contrasting function. ⋯ Animal studies have shown that ACE2 and AT2 receptors counter the pro-inflammatory and other effects mediated by angiotensin II by their vasodilator, anti-inflammatory, anti-fibrotic, and anti-proliferative effects. They have been shown to protect against and revert acute lung injuries. The instrumental role of recombinant ACE2, AT2 receptor agonists, and AT1 receptor blockers may be helpful in the treatment of COVID-19.
-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging human coronavirus responsible for coronavirus disease 2019 (COVID-19), a predominantly respiratory disease that has become a global pandemic. Millions of people worldwide are suffering from COVID-19, and hundreds of thousands of those infected have died. ⋯ To assess preventive and therapeutic strategies, it is imperative to understand the pathogenesis and immune response against SARS-CoV-2. In this review, we concentrate on the protective adaptive immune response elicited by this novel coronavirus as well as requirements for a successful vaccine inducing optimal protection.
-
The ongoing novel coronavirus disease 2019 (COVID-19) pandemic has been responsible for millions of infections and hundreds of thousands of deaths. To date, there is no approved targeted treatment, and many investigational therapeutic agents and vaccine candidates are being considered for the treatment of COVID-19. To extract and summarize information on potential vaccines and therapeutic agents against COVID-19 at different stages of clinical trials from January to March 2020, we reviewed major clinical trial databases such as ClinicalTrials.gov, WHO International Clinical Trials Registry Platform (ICTRP), and other primary registries between January and March 15, 2020. ⋯ Many novel compounds and vaccines against COVID-19 are currently under investigation. Some candidates have been tested for other viral infections and are listed for clinical trials against the COVID-19 pipeline. Currently, there are no effective specific antivirals or drug combinations available for the treatment of COVID-19.