Frontiers in neuroscience
-
Frontiers in neuroscience · Jan 2018
Sex-Specific Associations Between Inter-Individual Differences in Heart Rate Variability and Inter-Individual Differences in Emotion Regulation.
Neurobiological theories suggest that inter-individual differences in vagally mediated heart rate variability (vmHRV) have the potential to serve as a biomarker for inter-individual differences in emotion regulation that are due to inter-individual differences regarding the engagement of prefrontal and (para-)limbic brain regions during emotion processing. To test these theories, we investigated whether inter-individual differences in vmHRV would be associated with inter-individual differences in emotion regulation. We determined resting state vmHRV in a sample of 176 individuals that had also completed a short self-report measure of reappraisal and suppression use. ⋯ However, this association was only evident among male but not female participants, indicating a sex-specific association between inter-individual differences in resting state vmHRV and inter-individual differences in self-reported emotion regulation. These findings, which are consistent with previous ones, support theoretical claims that inter-individual differences in vmHRV serve as a biomarker for inter-individual differences in emotion regulation. Combing (ultra-)short-term measures of resting state vmHRV with short self-report measures of emotion regulation may, thus, be useful for researchers who have to investigate the neurobiological mechanisms of emotion regulation in a time- and resource-efficient manner.
-
Frontiers in neuroscience · Jan 2018
Insulin Confers Differing Effects on Neurite Outgrowth in Separate Populations of Cultured Dorsal Root Ganglion Neurons: The Role of the Insulin Receptor.
Apart from its pivotal role in the regulation of carbohydrate metabolism, insulin exerts important neurotrophic and neuromodulator effects on dorsal root ganglion (DRG) neurons. The neurite outgrowth-promoting effect is one of the salient features of insulin's action on cultured DRG neurons. Although it has been established that a significant population of DRG neurons express the insulin receptor (InsR), the significance of InsR expression and the chemical phenotype of DRG neurons in relation to the neurite outgrowth-promoting effect of insulin has not been studied. ⋯ However, the responsiveness of DRG neurons expressing the InsR was superior to populations of DRG neurons which lack this receptor. The findings also revealed that besides the expression of the InsR, inherent properties of peptidergic, but not non-peptidergic nociceptive neurons may also significantly contribute to the mechanisms of neurite outgrowth of DRG neurons. These observations suggest distinct regenerative propensity for differing populations of DRG neurons which is significantly affected through insulin receptor signaling.
-
Frontiers in neuroscience · Jan 2018
Electroacupuncture Inhibits Visceral Nociception via Somatovisceral Interaction at Subnucleus Reticularis Dorsalis Neurons in the Rat Medulla.
Electroacupuncture (EA) is an efficacious treatment for alleviating visceral pain, but the underlining mechanisms are not fully understood. This study investigated the role of medullary subnucleus reticularis dorsalis (SRD) neurons in the effects of EA on visceral pain. We recorded the discharges of SRD neurons extracellularly by glass micropipettes on anesthetized rats. ⋯ Yet, the responses of SRD neurons to EA stimulation reached a plateau when EA exceeded 6 mA. In addition, 0.5-1 mA of EA had no effect on CRD-induced nociceptive responses of SRD neurons. In conclusion, EA produced an inhibiting effect on visceral nociception in an intensity-dependent manner, which probably is due to the somatovisceral interaction at SRD neurons.
-
Frontiers in neuroscience · Jan 2018
Neurochemical Modifications in the Hippocampus, Cortex and Hypothalamus of Mice Exposed to Long-Term High-Fat Diet.
Metabolic syndrome and diabetes impact brain function and metabolism. While it is well established that rodents exposed to diets rich in saturated fat develop brain dysfunction, contrasting results abound in the literature, likely as result of exposure to different high-fat diet (HFD) compositions and for varied periods of time. In the present study, we investigated alterations of hippocampal-dependent spatial memory by measuring Y-maze spontaneous alternation, metabolic profiles of the hippocampus, cortex and hypothalamus by 1H magnetic resonance spectroscopy (MRS), and levels of proteins specific to synaptic and glial compartments in mice exposed for 6 months to different amounts of fat (10, 45, or 60% of total energy intake). ⋯ For both HFD levels, reductions of the vesicular glutamate transporter vGlut1 and levels of the vesicular GABA transporter were observed in the hippocampus and hypothalamus, relative to controls. Immunoreactivity against GFAP and/or Iba-1 in the hypothalamus was higher in mice exposed to HFD than controls, suggesting occurrence of gliosis. We conclude that different levels of dietary fat result in distinct neurochemical alterations in the brain.
-
Frontiers in neuroscience · Jan 2018
Modulation of Working Memory Using Transcranial Electrical Stimulation: A Direct Comparison Between TACS and TDCS.
Transcranial electrical stimulation (TES) has been considered a promising tool for improving working memory (WM) performance. Recent studies have demonstrated modulation of networks underpinning WM processing through application of transcranial alternating current (TACS) as well as direct current (TDCS) stimulation. Differences between study designs have limited direct comparison of the efficacy of these approaches, however. ⋯ The pooling allowed implementation of a within-subject crossover study design, with a direct comparison of the effects of TACS and TDCS in a subgroup of participants (N = 10), each of whom received both stimulation types, in a counterbalanced order, with pre-stimulation performance the same for both sessions. TACS resulted in a greater improvement in RT-hits than TDCS (F(2,18) = 4.31 p = 0.03). Our findings suggest that future work optimizing the application of TACS has the potential to facilitate WM performance.