Frontiers in neuroscience
-
Frontiers in neuroscience · Jan 2018
Resting State Vagally-Mediated Heart Rate Variability Is Associated With Neural Activity During Explicit Emotion Regulation.
Resting state vagally mediated heart rate variability (vmHRV) is related to difficulties in emotion regulation (ER). The prefrontal cortex (PFC) provides inhibitory control over the amygdala during ER. Previous studies linked vmHRV with activity in the ventromedial PFC (vmPFC) during implicit ER. ⋯ In participants with high vmHRV amygdala activity was modulated only when using reappraisal and for low vmHRV participants only when using response modulation. Similar, dorsomedial PFC activity in high vmHRV participants was increased when using reappraisal and in low vmHRV participants when using response modulation to regulate unpleasant emotions. These results suggest that individuals with low vmHRV might have difficulties in recruiting prefrontal brain areas necessary for the modulation of amygdala activity during explicit ER.
-
Frontiers in neuroscience · Jan 2018
Neurochemical Modifications in the Hippocampus, Cortex and Hypothalamus of Mice Exposed to Long-Term High-Fat Diet.
Metabolic syndrome and diabetes impact brain function and metabolism. While it is well established that rodents exposed to diets rich in saturated fat develop brain dysfunction, contrasting results abound in the literature, likely as result of exposure to different high-fat diet (HFD) compositions and for varied periods of time. In the present study, we investigated alterations of hippocampal-dependent spatial memory by measuring Y-maze spontaneous alternation, metabolic profiles of the hippocampus, cortex and hypothalamus by 1H magnetic resonance spectroscopy (MRS), and levels of proteins specific to synaptic and glial compartments in mice exposed for 6 months to different amounts of fat (10, 45, or 60% of total energy intake). ⋯ For both HFD levels, reductions of the vesicular glutamate transporter vGlut1 and levels of the vesicular GABA transporter were observed in the hippocampus and hypothalamus, relative to controls. Immunoreactivity against GFAP and/or Iba-1 in the hypothalamus was higher in mice exposed to HFD than controls, suggesting occurrence of gliosis. We conclude that different levels of dietary fat result in distinct neurochemical alterations in the brain.
-
Frontiers in neuroscience · Jan 2018
Longitudinal Connectomes as a Candidate Progression Marker for Prodromal Parkinson's Disease.
Parkinson's disease is the second most prevalent neurodegenerative disorder in the Western world. It is estimated that the neuronal loss related to Parkinson's disease precedes the clinical diagnosis by more than 10 years (prodromal phase) which leads to a subtle decline that translates into non-specific clinical signs and symptoms. By leveraging diffusion magnetic resonance imaging brain (MRI) data evaluated longitudinally, at least at two different time points, we have the opportunity of detecting and measuring brain changes early on in the neurodegenerative process, thereby allowing early detection and monitoring that can enable development and testing of disease modifying therapies. ⋯ Experiments indicated that the longitudinal brain connectome progression score was able to discriminate between the progression of Parkinson's disease and Control groups with an area under the receiver operating curve of 0.89 [confidence interval (CI): 0.81-0.96] and discriminate the progression of the High Risk Prodromal and Control groups with an area under the curve of 0.76 [CI: 0.66-0.92]. In these same subjects, common motor and cognitive clinical scores used in Parkinson's disease research showed little or no discriminative ability when evaluated longitudinally. Results suggest that it is possible to quantify neurodegenerative patterns of progression in the prodromal phase with longitudinal diffusion magnetic resonance imaging connectivity data and use these image-based patterns as progression markers for neurodegeneration.
-
Frontiers in neuroscience · Jan 2018
Analysis of α-Synuclein Pathology in PINK1 Knockout Rat Brains.
Mutations in PTEN induced kinase 1 (PINK1) cause autosomal recessive Parkinson's disease (PD). The main pathological hallmarks of PD are loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of protein aggregates containing α-synuclein. Previous studies of PINK1 knockout (PINK1-/-) rats have reported mitochondrial dysfunction, locomotor behavioral deficits, loss of neurons in the substantia nigra and α-synuclein aggregates in various brain regions. ⋯ Total synuclein protein levels were unchanged; however, biochemical fractionation showed a significant shift of α-synuclein from the cytosolic fraction to the synaptic vesicle-enriched fraction of PINK1-/- brain homogenates compared to WT. This data indicates that PINK1 deficiency results in abnormal α-synuclein localization, protease resistance and aggregation in vivo. The PINK1-/- rat could be a useful animal model to study the role of abnormal α-synuclein in PD-related neurodegeneration.
-
Frontiers in neuroscience · Jan 2018
Effects of Non-invasive Neuromodulation on Executive and Other Cognitive Functions in Addictive Disorders: A Systematic Review.
Background: In order to improve the current treatment of addictive disorders non-invasive neuromodulation over the dorsolateral prefrontal cortex (DLPFC) has gained attention. The DLPFC is crucially involved in executive functioning, functions which are related to the course of addictive disorders. Non-invasive stimulation of the DLPFC may lead to changes in executive functioning. ⋯ Nevertheless, the results of these studies are promising in light of improvement of current treatment. Therefore, we recommend future studies that compare the effect of different types of stimulation, stimulation sides and number of stimulation sessions in larger clinical trials. This will significantly increase the comparability of the studies and thereby accelerate and clarify the conclusion on whether non-invasive neuromodulation is an effective add-on treatment for substance dependence.