Frontiers in immunology
-
Frontiers in immunology · Jan 2020
Pan-Cancer Analysis of Immune Cell Infiltration Identifies a Prognostic Immune-Cell Characteristic Score (ICCS) in Lung Adenocarcinoma.
Background: The tumor microenvironment (TME) consists of heterogeneous cell populations, including malignant cells and nonmalignant cells that support tumor proliferation, invasion, and metastasis through extensive cross talk. The intra-tumor immune landscape is a critical factor influencing patient survival and response to immunotherapy. Methods: Gene expression data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. ⋯ The multivariate and stratified analyses further revealed that the ICCS was an independent prognostic factor for LUAD. Conclusions: The infiltration of immune cells in 32 cancer types was quantified, and considerable heterogeneity was observed in the prognostic relevance of these cells in different cancer types. An ICCS model was constructed for LUAD with competent prognostic performance, which can further deepen our understanding of the TME of LUAD and can have implications for immunotherapy.
-
Frontiers in immunology · Jan 2020
17β-Estradiol Promotes Trained Immunity in Females Against Sepsis via Regulating Nucleus Translocation of RelB.
Sepsis is more common among males than females, and the unequal estrogen levels have been suspected to play a vital role in gender differences. Recently, trained immunity is reported to be a novel strategy for the innate immune system to fight infection. However, it has not been clarified whether β-glucan-induced trained immunity causes different responses to early sepsis between male and female mice. ⋯ Mechanistically, we found that E2 inhibited the nuclear translocation of RelB, which is a member of non-canonical pathway of NFκB and contributes to macrophage polarization to change the intensity of trained immunity. This study is the first to indicate the role of E2 in the trained immunity induced by β-glucan to protect against E. coli-induced sepsis via the non-canonical NFκB pathway. These results improve our understanding of the molecular mechanisms governing trained immunity in gender differences.
-
Frontiers in immunology · Jan 2020
Review Comparative StudyComparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses.
The 2019 novel coronavirus (SARS-CoV-2) pandemic has caused a global health emergency. The outbreak of this virus has raised a number of questions: What is SARS-CoV-2? How transmissible is SARS-CoV-2? How severely affected are patients infected with SARS-CoV-2? What are the risk factors for viral infection? What are the differences between this novel coronavirus and other coronaviruses? To answer these questions, we performed a comparative study of four pathogenic viruses that primarily attack the respiratory system and may cause death, namely, SARS-CoV-2, severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and influenza A viruses (H1N1 and H3N2 strains). This comparative study provides a critical evaluation of the origin, genomic features, transmission, and pathogenicity of these viruses. Because the coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 is ongoing, this evaluation may inform public health administrators and medical experts to aid in curbing the pandemic's progression.