Frontiers in immunology
-
Frontiers in immunology · Jan 2020
Contriving Multi-Epitope Subunit of Vaccine for COVID-19: Immunoinformatics Approaches.
COVID-19 has recently become the most serious threat to public health, and its prevalence has been increasing at an alarming rate. The incubation period for the virus is ~1-14 days and all age groups may be susceptible to a fatality rate of about 5.9%. COVID-19 is caused by a novel single-stranded, positive (+) sense RNA beta coronavirus. ⋯ Lastly, to confirm the expression of the designed vaccine, the mRNA of the vaccine was enhanced with the aid of the Java Codon Adaptation Tool, and the secondary structure was generated from Mfold. Then we performed in silico cloning. The final vaccine requires experimental validation to determine its safety and efficacy in controlling SARS-CoV-2 infections.
-
Frontiers in immunology · Jan 2020
ReviewViral Evasion of the Complement System and Its Importance for Vaccines and Therapeutics.
The complement system is a key component of innate immunity which readily responds to invading microorganisms. Activation of the complement system typically occurs via three main pathways and can induce various antimicrobial effects, including: neutralization of pathogens, regulation of inflammatory responses, promotion of chemotaxis, and enhancement of the adaptive immune response. These can be vital host responses to protect against acute, chronic, and recurrent viral infections. ⋯ A better understanding of this virus-host interplay and its contribution to pathogenesis has previously led to: the identification of genetic factors which influence viral infection and disease outcome, the development of novel antivirals, and the production of safer, more effective vaccines. This review will discuss the antiviral effects of the complement system against numerous viruses, the mechanisms employed by these viruses to then evade or manipulate this system, and how these interactions have informed vaccine/therapeutic development. Where relevant, conflicting findings and current research gaps are highlighted to aid future developments in virology and immunology, with potential applications to the current COVID-19 pandemic.
-
Frontiers in immunology · Jan 2020
Is Cross-Reactive Immunity Triggering COVID-19 Immunopathogenesis?
The serological responses to both SARS-CoV-1 and SARS-CoV-2 virus have some unique characteristics that suggest cross-reactive priming by other human coronaviruses (hCoVs). The early kinetics and magnitude of these responses are, in some cases, associated with worse clinical outcomes in SARS and COVID-19. ⋯ Studies in non-human primates show that SARS-CoV-1 S-protein vaccine-induced antibodies are associated with acute lung injury in macaques challenged with SARS-CoV-1. Here we discuss the potential of cross-reactive immunity to drive the immunopathogenesis of COVID-19 and its implications for current efforts to develop immune-based therapies and vaccines.
-
Frontiers in immunology · Jan 2020
COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and Machine Learning.
To ultimately combat the emerging COVID-19 pandemic, it is desired to develop an effective and safe vaccine against this highly contagious disease caused by the SARS-CoV-2 coronavirus. Our literature and clinical trial survey showed that the whole virus, as well as the spike (S) protein, nucleocapsid (N) protein, and membrane (M) protein, have been tested for vaccine development against SARS and MERS. However, these vaccine candidates might lack the induction of complete protection and have safety concerns. ⋯ The protein was also predicted to contain promiscuous MHC-I and MHC-II T-cell epitopes, and the predicted linear B-cell epitopes were found to be localized on the surface of the protein. Our predicted vaccine targets have the potential for effective and safe COVID-19 vaccine development. We also propose that an "Sp/Nsp cocktail vaccine" containing a structural protein(s) (Sp) and a non-structural protein(s) (Nsp) would stimulate effective complementary immune responses.
-
Frontiers in immunology · Jan 2020
Case ReportsCase Report: Systemic Inflammatory Response and Fast Recovery in a Pediatric Patient With COVID-19.
We report a case of an 8-year-old girl who underwent a SARS-CoV-2 infection manifesting with atypical symptoms spearheaded by abdominal discomfort and systemic inflammation and partially mimicking hemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS), which however did not fulfill the HLH/MAS diagnostic criteria. In this case of what has since been described as Pediatric Inflammatory Multisystem Syndrome Temporally associated with SARS-COV-2 (PIMS-TS) we documented excellent clinical response to immunosuppression with systemic corticosteroids and intravenous immunoglobulins. We show a detailed longitudinal development of neutrophil immunophenotype which suggests activation and engagement of neutrophils during PIMS-TS with compensatory contraction of the response and contra-regulation of neutrophil phenotype during recovery.