Transfusion
-
Shock and severe tissue injury lead to an endogenous coagulopathy mediated by activation of Protein C and hyperfibrinolysis known as acute traumatic coagulopathy. Together, hemodilution, acidosis, inflammation, and hypothermia result in a global trauma-induced coagulopathy. Coagulopathy in trauma is associated with mortality. Early and effective hemostatic resuscitation is critical in restoring perfusion, correcting coagulopathy, and saving lives in exsanguinating trauma. Lyophilized plasma (LP) provides a logistically superior alternative to fresh frozen plasma (FFP). ⋯ By minimizing the volume of reconstituted LP and optimizing its anti-inflammatory properties, an LP resuscitation fluid may be created to provide effective hemostatic resuscitation with superior logistical properties.
-
Coagulopathy related to massive bleeding has a multifactorial aetiology. Coagulopathy is related to shock and blood loss including consumption of clotting factors and platelets and hemodilution. Additionally hyperfibrinolysis, hypothermia, acidosis, and metabolic changes affect the coagulation system. The aim of any hemostatic therapy is to control bleeding and minimize blood loss and transfusion requirements. Transfusion of allogeneic blood products as well as the presence of coagulopathy cause increased morbidity and mortality. ⋯ Future treatment of coagulopathy associated with massive bleeding can be based on an individualized point-of-care guided rational use of coagulation factor concentrates such as fibrinogen, prothrombin complex concentrate, and recombinant factor VIIa. The timely and rational use of coagulation factor concentrates may be more efficacious and safer than ratio-driven use of transfusion packages of allogeneic blood products.
-
Comparative Study
Fresh whole blood use by forward surgical teams in Afghanistan is associated with improved survival compared to component therapy without platelets.
In Afghanistan, a substantial portion of resuscitative combat surgery is performed by US Army forward surgical teams (FSTs). Red blood cells (RBCs) and fresh frozen plasma (FFP) are available at these facilities, but platelets are not. FST personnel frequently encounter high-acuity patient scenarios without the ability to transfuse platelets. An analysis of the use of fresh whole blood (FWB) at FSTs therefore allows for an evaluation of outcomes associated with this practice. ⋯ The use of FWB in austere combat environments appears to be safe and is independently associated with improved survival to discharge when compared with resuscitation with RBCs and FFP alone. Mortality was similar for patients transfused uncrossmatched Type O compared with ABO type-specific FWB in an austere setting.
-
The rapid reversal of warfarin in the setting of traumatic brain injury (TBI) has been associated with improved outcomes. Until now, remote reversal of hypocoagulable states has not been possible in the prehospital environment. This manuscript describes the development and analysis of a prehospital plasma transfusion protocol to reverse warfarin at the earliest possible moment after TBI. ⋯ Remote prehospital plasma transfusions effectively reverse anticoagulation secondary to warfarin administration in TBI patients. It is feasible to transfuse thawed plasma in the prehospital setting via remote damage control techniques without increasing waste. Prospective studies are needed to determine if this practice can improve outcomes in this population.
-
The temporal pattern of the biologic mechanism linking red blood cell (RBC) storage duration with clinical outcomes is yet unknown. This study investigates how such a temporal pattern can affect the power of randomized controlled trials (RCT) to detect a relevant clinical outcome mediated by the transfusion of stored RBCs. ⋯ Ongoing RCTs may lack enough power to settle the issue of whether or not the transfusion of stored blood has a negative clinical impact. A precautionary reduction of the maximum storage time to 35 days is advisable.