Transfusion
-
Increased focus on traumatic coagulopathy over the last decade has led to more aggressive use of hemostatic agents in resuscitation of the massively bleeding patient. Novel formulations of plasma factors and other therapeutics have opened for early intervention to prevent coagulopathy and may even be utilized in the prehospital setting. Careful selection of patients to receive hemostatic agents early during the resuscitation is of great importance due to the potential detrimental effects of this treatment. ⋯ In addition to environmental factors such as temperature, altitude, and humidity, electromagnetic interference issues and operators' skills must be taken into account. Coagulation parameters appear to be a useful tool in identifying patients with increased risk of massive bleeding at an early stage. Further studies are needed to determine if prehospital intervention based on POC analyses improves outcome.
-
With the advent of remote damage control resuscitation and far-forward surgery, a renewed emphasis has been placed on examining a variety of pharmacologic adjuncts to controlling blood loss before definitive operative intervention. In this paper, the authors review the current state of the art for tranexamic acid (TXA) and its potential benefits to those patients who are in need of a massive transfusion. Specifically addressed are its biologic and pharmacologic properties, as well the results of a number of recent studies. ⋯ The 2012 Military Application of Tranexamic Acid in Trauma Emergency Resuscitation study provided a retrospective analysis of 896 wounded cared for at a military hospital in Afghanistan. This study demonstrated a 23.9%-17.4% reduction in all-cause mortality. Finally, they discuss the potential complications associated with TXA use as well as areas of future research, which are needed to solidify our knowledge of TXA and its potential beneficial effects on controlling bleeding.
-
Coagulopathy after traumatic brain injury (TBI) is frequent and represents a powerful predictor related to outcome and prognosis. The complex pathophysiological mechanisms of the coagulopathy of TBI are multifactorial and remain still undefined. The nature of the coagulation abnormalities differs between severe TBI and non-TBI with somatic injuries. ⋯ Hemocoagulative disorders after TBI may be amenable to treatment, and adequate and timely management may protect from secondary injury and poor outcomes. Functional assays such as viscoelastic tests may be supportive in early detection, diagnosis, and guidance of treatment. This review summarizes the current understanding with regard to frequency, pathogenesis, diagnosis, and treatment of the coagulopathy after TBI.
-
Comparative Study
Spray-dried plasma and fresh frozen plasma modulate permeability and inflammation in vitro in vascular endothelial cells.
After major traumatic injury, patients often require multiple transfusions of fresh frozen plasma (FFP) to correct coagulopathy and to reduce bleeding. A spray-dried plasma (SDP) product has several logistical benefits over FFP use in trauma patients with coagulopathy. These benefits include ease of transport, stability at room temperature, and rapid reconstitution for infusion. Our past work suggests that FFP promotes endothelial stability by inhibiting endothelial permeability. ⋯ These data suggest the equivalence of FFP and SDP on modulation of endothelial function and inflammation in vitro.