Frontiers in pharmacology
-
Frontiers in pharmacology · Jan 2020
Integrating Pharmacology and Gut Microbiota Analysis to Explore the Mechanism of Citri Reticulatae Pericarpium Against Reserpine-Induced Spleen Deficiency in Rats.
Citri Reticulatae Pericarpium (CRP), dried peels of Citrus reticulata Blanco and its cultivars, is an important traditional Chinese medicine for the treatment of spleen deficiency-related diseases. To date, the mechanism of CRP alleviating spleen deficiency has not been well investigated. This study aimed to explore corresponding mechanisms with integrating pharmacology and gut microbiota analysis. ⋯ Network pharmacology analysis showed that apigenin, luteolin, naringenin, hesperidin, hesperetin, homoeriodictyol, dihydroxy-tetramethoxyflavone, and monohydroxy-tetramethoxyflavone were the core bioactive components for CRP against spleen deficiency. Further Gene Ontology analysis and pathway enrichment suggested that therapeutic effects of CRP against spleen deficiency involved multiple pathways such as tumor necrosis factor signaling, hypoxia-inducible factor-1 signaling and Toll-like receptor signaling pathway. These results would help to understand the mechanism of CRP alleviating spleen deficiency and provide a reference for further studies.
-
Frontiers in pharmacology · Jan 2020
Clinical TrialVolume Matters in Ultrasound-Guided Perineural Dextrose Injection for Carpal Tunnel Syndrome: A Randomized, Double-Blinded, Three-Arm Trial.
Ultrasound-guided perineural dextrose injection (PDI) has been reported effective for carpal tunnel syndrome (CTS). Higher volume of injectate may reduce adhesion of median nerve from other tissues, but volume-dependent effects of PDI in CTS remain unknown. We aimed to investigate whether PDI with different injectate volumes had different effects for CTS participants. ⋯ There was no significant difference between the three groups at the 24th-week post-injection follow-up. Clinical Trial Registration: www. ClinicalTrials.gov, identifier NCT03598322.
-
Frontiers in pharmacology · Jan 2020
Impact of Implementing CYP2C19 Genotype-Guided Antiplatelet Therapy on P2Y12 Inhibitor Selection and Clinical Outcomes in Acute Coronary Syndrome Patients After Percutaneous Coronary Intervention: A Real-World Study in China.
Background: CYP2C19 loss-of-function (LOF) alleles reduce the effectiveness of clopidogrel in patients undergoing percutaneous coronary intervention for acute coronary syndrome. However, the clinical impact of implementing CYP2C19 gene-guided pharmacotherapy is unclear, especially among the Chinese population. The purpose of this study was to evaluate P2Y12 receptor inhibitor selection and clinical outcomes upon implementation of CYP2C19 genotype-guided pharmacotherapy in current clinical practice. ⋯ Among the patients treated with ticagrelor, there was no significant difference in the MACCE rate between the LOF group and non-LOF group (4.3 vs. 4.0%; log-rank p = 0.846; IPTW-adjusted HR 1.184; 95% CI 0.582-2.410). There was no significant difference in the incidence of clinically significant bleeding events among the four groups. Conclusion: This study confirms that efficiently returned CYP2C19 genotype results did partially guide cardiologists to prescribe ticagrelor for patients with a LOF allele, and that clopidogrel had a higher risk of MACCE than ticagrelor in these patients, which provides support for the implementation of CYP2C19 gene-guided antiplatelet therapy in clinical practice.
-
Frontiers in pharmacology · Jan 2020
Alleviation of Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome in Rats by Yiqi Huayu Jiedu Decoction: A Tandem Mass Tag-Based Proteomics Study.
To study the effect of Yiqi Huayu Jiedu Decoction (YQHYJD) on protein expression in the lung tissue of acute respiratory distress syndrome (ARDS) rats and to explore the underlying molecular therapeutic mechanism of YQHYJD. ⋯ YQHYJD can alleviate the lung injury of ARDS rats by regulating the Fc gamma receptor-mediated phagocytosis pathway, which is related to immune system.
-
Frontiers in pharmacology · Jan 2020
Suppression of NLRP3 Inflammasome by Erythropoietin via the EPOR/JAK2/STAT3 Pathway Contributes to Attenuation of Acute Lung Injury in Mice.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. An excessive inflammatory response results in the progression of ALI/ARDS, and the NLRP3 inflammasome is a key participant in inflammation. Erythropoietin (EPO), which is clinically used for anemia, reportedly exerts pleiotropic effects in ALI. ⋯ Meanwhile, EPO evidently decreased interleukin-1β (IL-1β) and interleukin-18 (IL-18) secretion, the expression of NLRP3 inflammasome components including pro-IL-1β, NLRP3, and cleaved caspase-1 as well as phosphorylation of nuclear factor-κB (NF-κB) p65, which may be associated with activation of EPO receptor (EPOR), phosphorylation of Janus-tyrosine kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). However, all the beneficial effects of EPO on ALI and modulation NLRP3 inflammasome were remarkably abrogated by the inhibition of EPOR/JAK2/STAT3 pathway and knockout (KO) of NLRP3 gene. Taken together, this study indicates that EPO can effectively attenuate LPS-induced lung injury in mice by suppressing the NLRP3 inflammasome, which is dependent upon activation of EPOR/JAK2/STAT3 signaling and inhibition of the NF-κB pathway.