Clinical and experimental pharmacology & physiology
-
1. Phantom limb pain and sensations are common in amputees. ⋯ Theories of phantoms are presented, including peripheral, central and supraspinal theories, with particular attention given to Melzack's neuromatrix. 3. Evidence of cortical reorganization following amputation is given and the extent to which cortical reorganization contributes to phantom limb pain is discussed.
-
Clin. Exp. Pharmacol. Physiol. · May 2004
ReviewDifferential neural control of glomerular ultrafiltration.
The renal nerves constrict the renal vasculature, causing decreases in renal blood flow (RBF) and glomerular filtration rate (GFR). Whether renal haemodynamics are influenced by changes in renal nerve activity within the physiological range is a matter of debate. We have identified two morphologically distinct populations of nerves within the kidney, which are differentially distributed to the renal afferent and efferent arterioles. ⋯ In physiological studies, we demonstrated that differential changes in glomerular capillary pressure occurred in response to graded reflex activation of the renal nerves, compatible with our hypothesis. Thus, sympathetic outflow may be capable of selectively increasing or decreasing glomerular capillary pressure and, hence, GFR by differentially activating separate populations of renal nerves. This has important implications for our understanding of the neural control of body fluid balance in health and disease.
-
1. The background to current ideas in cardiac energetics is outlined and, in the genomic era, the need is stressed for detailed knowledge of mouse heart mechanics and energetics. 2. The mouse heart is clearly different to the rat in terms of its excitation-contraction (EC) coupling and the common assumption that heart rate difference between mice and humans will account for the eightfold difference in myocardial oxygen consumption is wrong, because the energy per beat of the mouse heart is approximately one-third that of the human heart. 3. ⋯ The outcome of recent cardiac modelling with variants of the Huxley and Hill/Eisenberg models is described. It has been necessary to invoke 'loose coupling' to replicate the low cardiac energy flux measured at low afterloads (medium to high velocities of shortening). 6. Lastly, some of the unexplained or 'nonsense' energetic data are outlined and eight unsolved problems in cardiac energetics are discussed.
-
Clin. Exp. Pharmacol. Physiol. · Sep 2002
ReviewSpiders of medical importance in the Asia-Pacific: atracotoxin, latrotoxin and related spider neurotoxins.
1. The spiders of medical importance in the Asia-Pacific region include widow (family Theridiidae) and Australian funnel-web spiders (subfamily Atracinae). In addition, cupboard (family Theridiidae) and Australian mouse spiders (family Actinopodidae) may contain neurotoxins responsible for serious systemic envenomation. ⋯ In particular omega-ACTX define a new insecticide target due to a specific action to block insect voltage-gated Ca2+ channels. Both these ACTX show promise for the development of baculoviral recombinant biopesticides expressing these toxins for the control of insecticide-resistant agricultural pests. In addition, they should provide valuable tools for the pharmacological and structural characterization of insecticide targets.
-
Clin. Exp. Pharmacol. Physiol. · Jan 2002
ReviewSalvaging the ischaemic penumbra: more than just reperfusion?
1. The ischaemic penumbra is defined as a moderately hypoperfused region that retains structural integrity but has lost function. In animal models of ischaemic stroke, this region is prone to recurrent anoxic depolarization and will become infarcted if reperfusion does not occur. ⋯ However, neurons within this salvaged region may be still at risk of further delayed neuronal injury. 4. In the present review, we aim to revisit the concept of the ischaemic penumbra and explore the role of selective and delayed neuronal injury in enlargement of the volume of infarction, as well as pathogenic mechanisms of white matter ischaemia. Both animal and human models of cerebral ischaemia imaged using magnetic resonance and positron emission tomography techniques will be discussed.