Cortex; a journal devoted to the study of the nervous system and behavior
-
An attentional bias to threat has been causally related to anxiety. Recent research has linked nonconscious attentional bias to threat with variability in the integrity of the amygdala - anterior cingulate pathway, which sheds light on the neuroanatomical basis for a behavioral precursor to anxiety. However, the extent to which structural variability in amygdala - anterior cingulate integrity relates to the functional connectivity within this pathway and how such functional connectivity may relate to attention bias behavior, remain critical missing pieces of the puzzle. ⋯ We found that greater biases in attention to threat predicted greater levels of uncinate fasciculus integrity, greater positive amygdala - anterior cingulate functional connectivity, and greater amygdala coupling with a broader social perception network including the superior temporal sulcus, tempoparietal junction (TPJ), and somatosensory cortex. Additionally, greater levels of uncinate fasciculus integrity correlated with greater levels of amygdala - anterior cingulate intrinsic functional connectivity. Thus, high bias individuals displayed a heightened degree of amygdala - anterior cingulate connectivity during basal conditions, which we believe predisposes these individuals to focus their attention on signals of threat within their environment.
-
Pain is a complex sensory experience resulting from the activity of a network of brain regions. However, the functional contribution of individual regions in this network remains poorly understood. We delivered single-pulse transcranial magnetic stimulation (TMS) to the contralateral primary somatosensory cortex (S1), secondary somatosensory cortex (S2) and vertex (control site) 120 msec after selective stimulation of nociceptive afferents using neodymium:yttrium-aluminium-perovskite (Nd:YAP) laser pulses causing painful sensations. ⋯ Signal-detection analysis demonstrated a loss of sensitivity to stimulation intensity, rather than a shift in perceived pain level or response bias. We did not find any effect of TMS on the ability to localise nociceptive stimuli on the skin. The novel finding that TMS over S2 can disrupt perception of pain intensity suggests a causal role for S2 in encoding of pain intensity.
-
Boundary extension (BE) is a pervasive phenomenon whereby people remember seeing more of a scene than was present in the physical input, because they extrapolate beyond the borders of the original stimulus. This automatic embedding of a scene into a wider context supports our experience of a continuous and coherent world, and is therefore highly adaptive. BE, whilst occurring rapidly, is nevertheless thought to comprise two stages. ⋯ Together our results show that the HC is involved in the active extrapolation of scenes beyond their physical borders. This information is then automatically and rapidly channelled through the scene processing hierarchy as far back as early VC. This suggests that the anticipation and construction of scenes is a pervasive and important aspect of our online perception, with the HC playing a central role.
-
Current behavioural and electrophysiological evidence suggests that music and language syntactic processing depends on at least partly shared neural resources. Existing studies using a simultaneous presentation paradigm are limited to the effects of violations of harmonic structure in Western tonal music on processing of single syntactic or semantic violations. Because melody is a universal property of music as it is emphasized also by non-western musical traditions, it is fundamental to investigate interactions between melodic expectation and language processing. ⋯ The LAN amplitude was decreased when language syntactic violations were presented simultaneously with low-probability notes compared to when they were presented with high-probability notes. The N400 was not influenced by the note-probability. These findings show support for the neural interaction between language and music processing, including novel evidence for melodic processing which can be incorporated in a computational framework of melodic expectation.
-
Because pain often signals the occurrence of potential tissue damage, nociceptive stimuli have the capacity to capture attention and interfere with ongoing cognitive activities. Working memory is known to guide the orientation of attention by maintaining goal priorities active during the achievement of a task. This study investigated whether the cortical processing of nociceptive stimuli and their ability to capture attention are under the control of working memory. ⋯ Most importantly, in the conditions involving working memory, the magnitude of nociceptive ERPs, including ERP components at early latency, were significantly reduced. This indicates that working memory is able to modulate the cortical processing of nociceptive input already at its earliest stages, and could explain why working memory reduces consequently ability of nociceptive stimuli to capture attention and disrupt performance of the primary task. It is concluded that protecting cognitive processing against pain interference is best guaranteed by keeping out of working memory pain-related information.