Frontiers in medicine
-
Frontiers in medicine · Jan 2020
A Machine-Learning Approach for Dynamic Prediction of Sepsis-Induced Coagulopathy in Critically Ill Patients With Sepsis.
Background: Sepsis-induced coagulopathy (SIC) denotes an increased mortality rate and poorer prognosis in septic patients. Objectives: Our study aimed to develop and validate machine-learning models to dynamically predict the risk of SIC in critically ill patients with sepsis. Methods: Machine-learning models were developed and validated based on two public databases named Medical Information Mart for Intensive Care (MIMIC)-IV and the eICU Collaborative Research Database (eICU-CRD). ⋯ The AUCs of the full and the compact models in the external validation were 0.842 (95% CI: 0.837-0.846) and 0.803 (95% CI: 0.798-0.809), respectively, which were still larger than those of Logistic Regression (0.660; 95% CI: 0.653-0.667) and SIC scores (0.752; 95% CI: 0.747-0.757). Prediction results were illustrated by SHapley Additive exPlanations (SHAP) values, which made our models clinically interpretable. Conclusions: We developed two models which were able to dynamically predict the risk of SIC in septic patients better than conventional Logistic Regression and SIC scores.
-
Frontiers in medicine · Jan 2020
Performance of Two Risk-Stratification Models in Hospitalized Patients With Coronavirus Disease.
Background: Despite an increase in the familiarity of the medical community with the epidemiological and clinical characteristics of coronavirus disease 2019 (COVID-19), there is presently a lack of rapid and effective risk stratification indicators to predict the poor clinical outcomes of COVID-19 especially in severe patients. Methods: In this retrospective single-center study, we included 117 cases confirmed with COVID-19. The clinical, laboratory, and imaging features were collected and analyzed during admission. ⋯ The K-M survival analysis showed that patients with MuLBSTA score ≥ 12 had higher risk of ICU (log-rank, P = 0.001) and high risk of death (log-rank, P = 0.000). Conclusions: The MuLBSTA score is valuable for risk stratification and could effectively screen high-risk patients at admission. The higher score at admission have higher risk of ICU care and death in patients infected with COVID.