Frontiers in medicine
-
Frontiers in medicine · Jan 2020
Unsupervised Clustering Analysis Based on MODS Severity Identifies Four Distinct Organ Dysfunction Patterns in Severely Injured Blunt Trauma Patients.
Purpose: We sought to identify a MODS score parameter that highly correlates with adverse outcomes and then use this parameter to test the hypothesis that multiple severity-based MODS clusters could be identified after blunt trauma. Methods: MOD score across days (D) 2-5 was subjected to Fuzzy C-means Clustering Analysis (FCM) followed by eight Clustering Validity Indices (CVI) to derive organ dysfunction patterns among 376 blunt trauma patients admitted to the intensive care unit (ICU) who survived to discharge. Thirty-one inflammation biomarkers were assayed (Luminex™) in serial blood samples (3 samples within the first 24 h and then daily up to D 5) and were analyzed using Two-Way ANOVA and Dynamic Network analysis (DyNA). ⋯ Interleukin (IL)-6, MCP-1, IL-10, IL-8, IP-10, sST2, and MIG were elevated differentially over time across the four clusters. DyNA identified remarkable differences in inflammatory network interconnectivity. Conclusion: These results suggest the existence of four distinct organ failure patterns based on MOD score magnitude in blunt trauma patients admitted to the ICU who survive to discharge.
-
Frontiers in medicine · Jan 2020
Lung Recruitment, Individualized PEEP, and Prone Position Ventilation for COVID-19-Associated Severe ARDS: A Single Center Observational Study.
Background: Patients with coronavirus disease 2019 (COVID-19) may develop severe acute respiratory distress syndrome (ARDS). The aim of the study was to explore the lung recruitability, individualized positive end-expiratory pressure (PEEP), and prone position in COVID-19-associated severe ARDS. Methods: Twenty patients who met the inclusion criteria were studied retrospectively (PaO2/FiO2 68.0 ± 10.3 mmHg). ⋯ All p < 0.001 vs. baseline). Conclusions: Lung recruitability was very low in COVID-19-associated severe ARDS. Individually titrated PEEP and prone positioning might improve lung mechanics and blood gasses.
-
Frontiers in medicine · Jan 2020
ReviewMicrovascular Fluid Exchange: Implications of the Revised Starling Model for Resuscitation of Dengue Shock Syndrome.
Dengue is the most common mosquito-borne viral infection in the world. The most feared complication is a poorly understood vasculopathy that occurs in only a small minority of symptomatic individuals, especially children and young adults, but can result in potentially fatal dengue shock syndrome (DSS). Based mainly on expert opinion, WHO management guidelines for DSS recommend prompt infusion of a crystalloid fluid bolus followed by a tapering crystalloid fluid regimen, supplemented if necessary by boluses of synthetic colloid solutions. ⋯ However, the revised Starling model emphasizes the critical contribution of the endothelial glycocalyx layer (EGL), indicating that it is the effective oncotic pressure gradient across the EGL not endothelial cells per se that opposes filtration. Based on several novel concepts that are integral to the revised Starling model, we review the clinical features of DSS and discuss a number of implications that are relevant for fluid management. We also highlight the need for context-specific clinical trials that address crucially important questions around the management of DSS.
-
Frontiers in medicine · Jan 2020
Artificial Intelligence in Skin Cancer Diagnostics: The Patients' Perspective.
Background: Artificial intelligence (AI) has shown promise in numerous experimental studies, particularly in skin cancer diagnostics. Translation of these findings into the clinic is the logical next step. This translation can only be successful if patients' concerns and questions are addressed suitably. ⋯ They would prefer an application scenario where physician and AI classify the lesions independently. With respect to AI-based applications in medicine, patients were concerned about insufficient data protection, impersonality and susceptibility to errors, but expected faster, more precise and unbiased diagnostics, less diagnostic errors and support for physicians. Conclusions: The vast majority of participants exhibited a positive attitude toward the use of artificial intelligence in melanoma diagnostics, especially as an assistance system.
-
Frontiers in medicine · Jan 2020
Diagnostic Accuracy of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration (EBUS-TBNA) in Real Life.
Background: EBUS-TBNA is an integral tool in the diagnosis and staging of lung cancer and other diseases involving mediastinal lymphadenopathy. Most studies attesting to the performance of EBUS-TBNA are prospective analyses performed under strict protocols. The objective of our study was to compare the accuracy of EBUS-TBNA to surgery in diagnosing hilar and mediastinal pathologies in a tertiary hospital, staffed by pulmonologists with and without formal interventional pulmonary training. ⋯ However, the sensitivity was comparatively lower. This was primarily due to the large number of EBUS-TBNA accessible lymph nodes that were not sampled. This data highlights the need for guidelines outlining the best sampling approach and lymph node selection.