The journal of pain : official journal of the American Pain Society
-
Dorsal root ganglion stimulation (DRGS) is a neuromodulation therapy for chronic pain that is refractory to conventional medical management. Currently, the mechanisms of action of DRGS-induced pain relief are unknown, precluding both our understanding of why DRGS fails to provide pain relief to some patients and the design of neurostimulation technologies that directly target these mechanisms to maximize pain relief in all patients. ⋯ Here, we summarize the leading hypotheses of the mechanisms of DRGS-induced analgesia, and propose areas of future study that will be vital to improving the clinical implementation of DRGS. PERSPECTIVE: This article synthesizes the evidence supporting the current hypotheses of the mechanisms of action of DRGS for chronic pain and suggests avenues for future interdisciplinary research which will be critical to fully elucidate the analgesic mechanisms of the therapy.
-
Nociceptive pain involves the activation of nociceptors without damage to the nervous system, whereas neuropathic pain is related to an alteration in the central or peripheral nervous system. Chronic pain itself and the transition from acute to chronic pain may be epigenetically controlled. In this cross-sectional study, a genome-wide DNA methylation analysis was performed using the blood DNA reduced representation bisulfite sequencing (RRBS) technique. ⋯ This study presents biological findings that help to characterize NOCI- and NEURO-affected pathways and opens the possibility of developing epigenetic diagnostic assays. PERSPECTIVE: Our results help to explain the various biological pathways modifications underlying the different clinical manifestations of nociceptive and neuropathic pains. Furthermore, the new targets identified in our study might help to discover more specific treatments for nociceptive or neuropathic pains.
-
Determining the mechanistic causes of complex biopsychosocial health conditions such as low back pain (LBP) is challenging, and research is scarce. Cross-sectional studies demonstrate altered excitability and organization of the somatosensory and motor cortex in people with acute and chronic LBP, however, no study has explored these mechanisms longitudinally or attempted to draw causal inferences. Using sensory evoked potential area measurements and transcranial magnetic stimulation derived map volume we analyzed somatosensory and motor cortex excitability in 120 adults experiencing acute LBP. ⋯ These data provide evidence that low somatosensory cortex excitability in the acute stage of LBP is a cause of chronic pain. PERSPECTIVE: This prospective longitudinal cohort study design identified low sensorimotor cortex excitability during the acute stage of LBP in people who developed chronic pain. Interventions that target this proposed mechanism may be relevant to the prevention of chronic pain.
-
Gut dysbiosis, defined as pathogenic alterations in the distribution and abundance of different microbial species, is associated with neuropathic pain in a variety of clinical conditions, but this has not been explored in the context of neuropathy in people with HIV (PWH). We assessed gut microbial diversity and dysbiosis in PWH and people without HIV (PWoH), some of whom reported distal neuropathic pain (DNP). DNP was graded on a standardized, validated severity scale. ⋯ Two candidate pathways for these associations, involving microbial pro-inflammatory components and microbially-produced anti-inflammatory short chain fatty acids, are discussed. Future studies might test interventions to re-establish a healthy gut microbiota and determine if this prevents or improves DNP. PERSPECTIVE: The association of neuropathic pain in people with HIV with reduced gut microbial diversity and dysbiosis raises the possibility that re-establishing a healthy gut microbiota might ameliorate neuropathic pain in HIV by reducing proinflammatory and increasing anti-inflammatory microbial products.
-
Observational Study
Chronic Pain Severity and Sociodemographics: An Evaluation of the Neurobiological Interface.
Chronic pain is variably associated with brain structure. Phenotyping based on pain severity may address inconsistencies. Sociodemographic groups also differ in the experience of chronic pain severity. ⋯ Our findings highlight the importance of further investigating social and environmental contributions in the experience of chronic pain to unravel the complex array of factors contributing to disparities. PERSPECTIVE: The study presents data demonstrating structural brain relationships with clinical pain severity, characteristic pain intensity and chronic pain stage, differ by sociodemographic groups. Findings yield insights into potential sources of previous inconsistent pain-brain relationships and highlights the need for future investigations to address social and environmental factors in chronic pain disparities research.