Paediatric respiratory reviews
-
The upper airway extends from the nasal aperture to the subglottis and can be the site of multiple types of congenital malformations leading to anatomical or functional obstruction. This can cause severe respiratory distress. Newborns are obligate nasal breathers; therefore nasal obstruction can lead to airway compromise and respiratory distress. ⋯ Knowledge of the upper airway embryological development and congenital anomalies is off prime importance in assessing the newborn with respiratory distress. In most cases flexible endoscopy establishes the diagnosis. Management is tailored to each condition and its degree of severity.
-
Pulmonary surfactant reduces surface tension at the air-liquid interface in the alveolus, thereby maintaining lung volumes during the respiratory cycle. In premature newborn infants, the lack of surfactant causes atelectasis and respiratory failure, characteristic of respiratory of distress syndrome. ⋯ Mutations in the genes encoding these proteins cause lethal respiratory distress in newborn infants. This review discusses the clinical and pathological findings associated with these inherited disorders of alveolar homeostasis.
-
Although aerosol therapy is most commonly used to treat asthma and COPD, there are a large number of aerosol medications now used or in development for other diseases. Mucoactive agents have long been available by aerosol, but now we have truly effective drugs to improve effective airway clearance including dornase alfa, hyperosmolar saline, and aerosol surfactant. ⋯ Insulin, recently approved in the US as aerosol therapy, and other peptides are systemically absorbed from the distal airway and alveolus. Aerosol gene transfer therapy to correct abnormalities associated with cystic fibrosis, primary ciliary dyskinesia and other airway diseases also holds great potential.