American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Apr 2017
ReviewEndothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets.
Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS). Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). ⋯ Prevailing evidence indicates that loss of endothelial barrier function plays a primary role in the development of VILI and ARDS. Thus this review will focus on the latest knowledge related to 1) the key role of the endothelium in the pathogenesis of VILI; 2) the transcription factors that relay the effects of excessive mechanical stress in the endothelium; 3) the mechanical stress-induced posttranslational modifications that influence key signaling pathways involved in VILI responses in the endothelium; 4) the genetic and epigenetic regulation of key target genes in the endothelium that are involved in VILI responses; and 5) the need for novel therapeutic strategies for VILI that can preserve endothelial barrier function.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Nov 2015
ReviewHomeostasis and its disruption in the lung microbiome.
The disciplines of physiology and ecology are united by the shared centrality of the concept of homeostasis: the stability of a complex system via internal mechanisms of self-regulation, resilient to external perturbation. In the past decade, these fields of study have been bridged by the discovery of the lung microbiome. ⋯ In this essay, we review recent insights into the feedback mechanisms by which the lung microbiome and the host response are regulated in health and dysregulated in acute and chronic lung disease. We propose three explanatory models supported by recent studies: the adapted island model of lung biogeography, nutritional homeostasis at the host-microbiome interface, and interkingdom signaling and the community stress response.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Nov 2015
ReviewPlatelets in the pathogenesis of acute respiratory distress syndrome.
Platelets have an emerging and incompletely understood role in a myriad of host immune responses, extending their role well beyond regulating thrombosis. Acute respiratory distress syndrome is a complex disease process characterized by a range of pathophysiologic processes including oxidative stress, lung deformation, inflammation, and intravascular coagulation. The objective of this review is to summarize existing knowledge on platelets and their putative role in the development and resolution of lung injury.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Sep 2015
ReviewLost after translation: insights from pulmonary surfactant for understanding the role of alveolar epithelial dysfunction and cellular quality control in fibrotic lung disease.
Dating back nearly 35 years ago to the Witschi hypothesis, epithelial cell dysfunction and abnormal wound healing have reemerged as central concepts in the pathophysiology of idiopathic pulmonary fibrosis (IPF) in adults and in interstitial lung disease in children. Alveolar type 2 (AT2) cells represent a metabolically active compartment in the distal air spaces responsible for pulmonary surfactant biosynthesis and function as a progenitor population required for maintenance of alveolar integrity. ⋯ This integrated response and its derangement will be placed in the context of cell stress and quality control signatures found in patients with familial or sporadic IPF as well as non-surfactant-related AT2 cell dysfunction syndromes associated with a fibrotic lung phenotype. Finally, the need for targeted therapeutic strategies for pulmonary fibrosis that address epithelial ER stress, its downstream signaling, and cell quality control are discussed.
-
Although asthma has long been considered a heterogeneous disease, attempts to define subgroups of asthma have been limited. In recent years, both clinical and statistical approaches have been utilized to better merge clinical characteristics, biology, and genetics. These combined characteristics have been used to define phenotypes of asthma, the observable characteristics of a patient determined by the interaction of genes and environment. ⋯ Now the addition of various 'omics and identification of specific molecular pathways have moved the concept of clinical phenotypes toward the concept of molecular phenotypes. The importance of these molecular phenotypes is being confirmed through the integration of molecularly targeted biological therapies. Thus the global term asthma is poised to become obsolete, being replaced by terms that more specifically identify the pathology associated with the disease.